A CLASS OF HEAVY TAILED DISTRIBUTIONS
D. G. KONSTANTINIDES

ABSTRACT. In this paper we present a class of heavy tailed distributions which provide
simple asymptotes for the ruin probability in the classical risk model under a constant
interest force. We examine the properties of this class in comparison with the standard
subexponential distributions.
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1. MOTIVATION.

We cosider a sequence of i.i.d. non-negative ramdom variables (Zj)x>1(claim sizes) with a
common distrubution function B(x) = 1—B(z) = P(Z; < z), z > 0, and a finite expectation
b. Let us introduce the integrated tail distribution, denoted by

1 [*=
(1.1) F(x):g / B(z)dz, x>0.
0
Definition 1.1. A distribution F' on [0,00) is said to belong to the class € if for some v > 1
— , F(vz)
1.2 F (v) =limsup = < 1.
1.2 (v) = limsup =75

According to this definition, we can find the following property of the class &:

Lemma 1.2. Let F' € &, then there exists some a > 0 and ¢ > 0 such that
(1.3) F(x) <cx ™™
holds for all large x > 0.

Proof. For the fixed v > 1 taken from (1.2), we write
F
lim sup _(vx) =

Hence, there exists a small enough ¢ > 0 such that y + ¢ < 1 and there exists a xg =
xo(v,y,€) > 0 such that for any x > zy, it holds

F
(1.4) Floa) e ct
F(z)
Now we start to prove the relation (1.3). For z > x, we write
1
o [Jostetea]

log v
1
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where [a] denotes the integer part of the number a. After several applications of the inequality
(1.4), we find:

IN

F(x) (y+e)F(z/v) < < (y+e)"Fz/v") <

exp log(y +¢) log z/xq ¢ F(x0).
log v

IN

Hence (1.3) follows with

1 — 1
c:exp{—%bg%}F(mo)>O, a:—%>0.

This ends the proof. O

We can see that this class is similar with the class D of distributions with doninatedly
varying tails. A distribution F' on [0, 00) belongs to D if for some v € (0, 1)

(1.5) F' (v) < 0.

or equivalently if for some v > 1

(1.6) F. (v) = liminf Fla) g,

= T()

Lemma 1.3. Let F € D, then there exists some 3 > 0 and d > 0 such that
(1.7) F(z) > da™"
holds for all large x > 0.

Proof. For the fixed v > 1 in (1.6), we write
F(vr)

lim inf — =z

Hence, for a small ¢ > 0 such that z—e > 0, it holds for all large x, say x > zg = x(v, z,€) >
0, that

(1.8) 1>FF((7§;)22—5>0.

Now we aim to prove the result in (1.7). For a number x > x(, we write

. {logx/xo N 1] |

log v
One easily checks the following steps by (1.8):

F(r) > (z—¢)F(x/v) > > (2 —&)"F(z/v") >

log(z — ¢ —
> exp {% logx/xo} F(xg).

Hence (1.7) follows with

log(z — _
d:exp{—%logxo}}?(xo) > 0, 8=
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The proof is over. 0

Let us remark that neither £ nor D are restricted in the frame of the heavy tailed distri-
butions. For example we remind that the distribution F' on [0, 00) belongs to the class S
if
(1.9) lim &) o

v F(x)
where F?* denotes the convolution of F with itself. It well known that both £ and D are

not covered by the class §. However on the subexponential part of these two classes is

concetrated the interest of the risk theory. Let us introduce the notation
A=ENS.

Now we return to the fact that the distribution F'is the integrated tail distribution corre-
sponding to a claim distribution B. A distribution B on [0, 00) is said to belong to the class
S* if it has a finite expectation b and

x E _ o
lim MB(z)dz = 2b.
r—o00 [ B(.CE)

In this case we know that B € S and F' € S.

Definition 1.4. A distribution B on [0, 00) is said to belong to the class A* if it has a finite
expectation b and its e.d.f.

1 [=
F(x)=— / B(z)dz, x>0,
0
belongs to A.

In this paper we concetrate our attention on the the classes A and A*. The initial moti-
vation of this investigation comes from an issue arised in risk theory. Namely a risk model
was considered, where the claim arrival times constitute a homogeneous Poisson process
(N(t)),»q, which is independent of (Z),~, and has an intensity A > 0. Therefore, the com-
pound Poisson process X (t) = Ziv:(tl) 7, is representing in actuarial context the total claim
amount accumulated up to time ¢ > 0, with X (¢) = 0 when N(¢) = 0. Let us denote by ¢
the constant gross premium rate and assume that there exists a constant interest force r > 0
which affects the risk process. With « > 0 as initial surplus of the insurance company, the

total surplus U, (t) up to time ¢, is given as follows

¢ ¢
U.(t) = ue™ + c/ e"*dz — / e dX (), t>0.
0 0

Let us define the ruin probability

o) =P (0 <0 00 =), w0,
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So the class A appears in Konstantinides et al. (2002) as the space of distributions, where
the following asymtpotics for ¢,.(u) holds

A [T, . d
(1.10) M@N—/‘m@i,UHm.

r Ju z
Simultaneously this issue was solved with the help of a local limit theory presented in the
papers Asmussen-Kalashnikov et al. (2002) and Asmussen-Korshunov et al. (2002) in the
frame of the class S*. Thus arises the question of comparison of the two classes and their
applications.

The paper is organized as follows. In the next section we collect some properties of the

classes £ and D. In the third section we study the classes A and DNS . In the forth section

we examine inclusion criteria for the classes A* and S*.

2. COMPARISON OF THE CLASSES £ AND D.

We write

M, =liminf zq¢(x) and M, = limsup zq(z)

Tr—00

From Konstantinides et al. (2002) we have the following result:

Lemma 2.1. Let F be a d.f. supported on [0,00) with a density function f(z) which is
eventually non-increasing. Then the following statements are equivalent:

L. (1.2) holds for some v > 1;

L. (1.2) holds for any v > 1;

I3. the hazard rate function of F, q(x) = f(x)/F(x), satisfies

(2.1) My = liminf zq(z) > 0.

Corollary 2.2. 1. F € A, if
0< M <My < oo.

2.FeS\E& if

0=DM; <My < 0.
3. Fe&\S,if

0< M; < My =o0.

LFEEus , if
0= M, < My, = 0.

Remark 2.3. Clearly, if F (v) =1 for somev > 1 then it holds for allv > 1. Furthermore,
we can obtain that

F,(v)<1 F3v>1 < F,(v)<1 Yo>1 < limsupzq(z) > 0.

r—00
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So we have that if F, (v) = 1 for some v > 1 then it holds for all v > 1. From these
discussions we can classify all possibilities of the values of Fy (v) and ' (v) into three cases:
1.F.(v)=F (v)=1 Yv>1;
2. F, (v)<1butF (v)=1 Yo>1;
3. F (v)<1 Yo>1.
The first case indicates that F(z) is slowly varying as x — oo. The third case is just the

fundamental assumption of the present paper.

In order to describe the relation between the two classes D and &, let see the following

obvious result:

Corollary 2.4. 1. FF € D N &, if and only if
0<F,(v)<F (v)<1, Yo>1.

2. FeD\ &, if and only if
0<F,(v)<F (v)=1, VYo>1.
3. Fe&\D, if and only if

0=F.(v)<F (v)<1, Vo>l

4. F ¢ EUD | if and only if
0=F,(v)<F (v)=1, Yo>1.

Let us now remind the concept of the lower and upper Matuszewska indices. The upper

and lower Matuszewska index J}r and J5 are defined as follows

log F, log F,

(2.2) Jh = gt x) =inf { 180 gL, s B
logv V—00 log'y

- 7= . logf*(v) . o . logf*(v)

In the terminology of Bingham et al. (1987), here the quantities J;% and J, are the upper and
lower Matuszewska indices of the non-negative and non-decreasing function f(z) = (F(z)) _1,
x > 0. The latter equalities in (2.3) and (2.2) are due to Theorem 2.1.5 in Bingham et al.
(1987). Without any confusion we simply call the J3 as the upper/lower Matuszewska index
of the d.f. F. For more details of the Matuszewska indices, see Chapter 2.1 of Bingham et
al. (1987), Cline & Samorodnitsky (1994).

By the definitions of the Matuszewska indices and the classes D and &, we immediately
obtain the following result, which clearly illustrate the symmetrical positions of the classes

D and &:



6 D. G. KONSTANTINIDES
Lemma 2.5. F € € if and only if J. > 0; F € D if and only if J; < 0o;

Proof. From the assumption,

InF"
— lim nF (v)

v—oo Inw

> 0,
and for v large enough, it follows that
In [F*(v)] <0,

which means that there exists a finite v > 1 for F' € £. O

Remark 2.6. It is worth to recall that if the upper Matuszewska index J7 is finite then
F € D. This indicates the symmetry with respect to the Matuszewska indices between the

classes € and D .

3. THE cLASS A.

Let us point out that the class A covers most of the well-known subexponential d.f.’s.
Indeed, by the definition one easily checks:

Remark 3.1. The distributions Pareto, Lognormal, Weibull, Loggamma, Burr, Benktander

I and II are members of the class A.
Furthermore, according to Pitman (1980) Th.IT , we easily obtain the following criteria:

Corollary 3.2. Suppose that the hazard rate function q(x) = Q'(x) exists and eventually
decrease to 0. We have

1. F € A if and only if

xT

(3.1) Jm | exp{yq(y)}f(y)dy = 1,
and
(3.2) hfig}f zq(z) > 0.
2. If
(3.3) /O ) exp{yq(y)} f(y)dy < oo,

and (3.2) hold, then F € A.

Theorem 3.3. Let F be a d.f. supported on [0,00) with an eventually decreasing density
function f(x). If for some v > 1

(3.4) 0<F,(v)<F (v) <1,
then F € AND.
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Proof. 1t suffices to prove F' € §. Noting that the left-hand side of inequality (3.4) is just the
definition of F' € D, we obtain that F'€ DN L C S (see Kliippelberg (1988) Cor. 3.4). O

Let us look for some easily verifiable conditions for the inclusion in A. We formulate them

in terms of the hazard function Q = —In F and its derivative q.

Definition 3.4. A distribution F' on [0,00) is said to belong to the class T of intermediate
varying tails, if

lif?F* (v) = 1.

In the following example appears that (3.3) is not a sufficient condition for F' € A.

Example 3.5. Let F be a d.f. with a density function that

fz) = { g_l In?z, x> e,

z <e.
Clearly, fory > e, F(y) = fyoo ' In"?zdr =In"'y. On one hand, we have
In"?y

/0 ) exp{yq(y)}f(y)dy = / N exp {ml y} y~ ' In " ydy

< / exp {ln_1 e} cy 'In 2 ydy = e.

So condition (3.3) is fulfilled. On the other hand, it is clear that F' ¢ A since, for any v > 0,

lim }1@@ =
v=oo F(x)
Proposition 3.6. Let F' and G be two d.f.’s supported on [0,00) and F € A. We have
G € A if one of the following conditions holds:
1. G(z) ~ CF(x) for some C > 0;
2. G(z) ~ Z,;“;Opkm(:v), where, {pr,k > 0} is a sequence of non-negative numbers
satisfying that 0 < >~ o pe (1 + ) < 0o for some e > 0.

Proof. 1.By a similar approach as used in the proof of Theorem 3 in Teugels (1975) we
obtain that if F' € S then G € §. The remaining proof of G € A is trivial.

2. Tt is well-known that, if F' € S then G € S and G(z) ~ F(x) >_p, kpx; see for example
Lemma 1 in Chover et al. (1973) and Theorem 2.13 in Cline (1987). Then from the first
part we obtain the assertion G € A. O

A distribution F' on [0, 00) is said to belong to the class £ (long-tailed d.f.’s) if
lim M =1

()

for some z > 0.
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Theorem 3.7. Let F' be an absolutely continuous d.f. supported on [0,00). We have F € A
if one of the following conditions holds:

1. 0 < liminf, . zq(z) < limsup,_, . zq(z) < oo;

2. q € Ry and eventually decreases to 0 as © — 0o, and Q(z) — xq(z) € R_1;

3. g€ R_, forye(0,1);

4. q 1s eventually decreasing, there exist some 6 € (0,1) and v € (1,00) such that Q(xz) <
2°Q(z) for all x > v, 2 > 1, and liminf, .o, zq(z) > (2 —2°)7L.

Proof. From Proposition 3.8 and Corollary 3.9 in Goldie and Kliippelberg (1998) we take
that F' € §* C S. Furthermore, anyone of the four conditions above implies (2.1). Therefore
by Lemma 3.7 we obtain that F' € A. O

The following example comes from Su and Tang (2003). It shows that there exist suitable
subexponential d.f.’s which satisfy the request in the case 2 on page 453 of Konstantinides
et al. (2002).

Example 3.8. Let X be a r.v. distributed by
pn = P(X =2"") = con P27, n >0,

where a > 1, B > 1 and ¢y > 0 is such that > p, = 1. Then the e.d.f. F of the rv. X
n=1

satisfies
Fes, F¢ A

Proof. Clearly, for any large enough z > 0 and some n(x) > 0 such that 2"~ < 2 < 2%,
B(x) = P(X >2™) ~ P(X =2""). Su and Tang (2003). proved that B € M*, that means
rB(x)

lim sup — < 00,
ool BE(2)

hence F' € S follows based on the discussions there. The proof of the following assertion is
straightforward: for any v > 1,

(3.5) F, (v) =0, F (v) =1.

It yields that F' ¢ AU D. O

4. INCLUSION CRITERIA FOR THE CLASSES A* AND S*.

Example 4.1. Let 7 be a geometric r.v. P(t=n)=(1-¢q)¢",0<q <1 andn > 0. Then,
for arbitrarily fized v, 1 < v < 1/q, the d.f. B = B, of r.v. Z = v™ satisfies B € A* but
B ¢ S*.

Proof. Clearly, the d.f. B has a finite expectation. Further, we have that d.f. B = B, of
r.v. Z =7 satisfies B € A* but B ¢ S*.

B(vx) . P >wvx) P(t >logz/logv + 1) ~ lim P(r>x+1)
z—oo B(x) 2o P(T>x) a—co  P(7>logx/logv) z—oo  P(1 > 1)

lim —— = lim ——= = lim =q.
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From this we get to know: 1. B € D and therefore its e.df. ' = F, € S (see Embrechts
and Omey (1984)); 2. B ¢ L and therefore B ¢ S* (recall Theorem 3.2(b) in Kliippelberg
(1988)); 3. for any fixed € > 0 and all large z > 0,

(4.1) (1 - )gB(x) < B(vz) < (1 + £)qB(x).

£)
Integration on (4.1) from z to oo yields (1 — &)quF(z) < F(vx) < (1 4 ¢)quF(x), which
implies that

. F(vr)
lim — =qu < 1,

i.e. (1.2) holds. Hence B € A* . O

We provide now some verifiable conditions for B € A*.

Theorem 4.2. Let B be a d.f. supported on [0,00). If

F F
(4.2) 0 < liminf —— 27 <I> hmsup * (x)

- <o,

then B € A*.

Proof. By Lemma 3.7, the left-hand side of ( 4.2) guarantees the condition (1.2) for some
v > 1. Meanwhile, by Cor. 3.4 in Kliippelberg (1988) the right-hand side of (4.2) implies
that F' € S. This proves that F' € A. d

Corollary 4.3. For any 1 < a < 3 < oo, FRV(—a«a,—f) C A*.

Proof. Let B € ERV(—a, —f). From the definition of ERV(—a, —f), it follows that
for any ¢ > 0 and all sufficiently large > 0 that B(2z) < (1 + £)27*B(z). We choose
0 <& <21 — 1 in the following inequalities:

2k+1

/x 2)d= Z/ dz<22ka:B (25x)

where the constant C satisfies
C=Y2(1+)27 =Y (1 +)2%)" < .
k=0

It follows that, for all sufficiently large x > 0,

1 x?( ) rB(x) B(x) s
0< = < < = S < (146)2 < oo,
i.e. the condition (4.2) holds. Thus, by Theorem 4.2 we obtain B € A*. O

Remark 4.4. From Corollary 4.3 we see that the asymptotics (1.10) holds if the d.f. B of
the claim size belongs to the class ERV (—a, —f) for some 1 < a < 3 < co. This improves
the main results in Klippelberg & Stadtmiiller (1998) since the corresponding assumption in
that paper is B € R_., for some v > 1.
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Let us consider now the criteria based on the hazard rate function. According to Theo-
rem 3.6 in Kliippelberg (1988) and Lemma 3.3 in Konstantinides et al. (2002), we obtain
immediately

Theorem 4.5. Suppose that the hazard rate function qg = Q'y ezists and eventually decrease
to 0. We have
1. B € A* if and only if

xT

(4.3) Jim | exp{ygp(x)}B(y)dy = p < oo,
and

(4.4) lim inf zqp(z) > 0.

2. If (4.4) and

(4.5) || explvmnn) By <

hold, then B € A*.

Clearly, condition (4.4) can be implied by
(4.6) lim inf zgp(x) > 0.

r—00
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