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We investigate the precise large deviations for negatively dependent random
variables. We prove general asymptotic relations for both the partial sums Sn for the
long tailed distributions and the random sums St for the subexponential distributions,
where the Nt is an integer counting process. It is found out that the precise large
deviations for negatively dependent random variables are insensitive to this kind of
dependence. Finally, we present applications on the classical counting processes,
Poisson, and renewal.
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1. Introduction

Our study is about the precise large deviations with dependent random variables.
Especially in this article, we examine random variables with heavy-tailed
distributions, which appear for modeling the large claims in actuarial and financial
problems. One of the main concepts we use is the negative dependence, that was
introduced in Block et al. (1982), and Ebrahimi and Ghosh (1981).

We call a sequence of random variables �Xk� k ≥ 1�:

(1) Lower Negatively Dependent (LND) if for each n = 1� 2� � � � and all
x1� x2� � � � � xn�

P�X1 ≤ x1� � � � � Xn ≤ xn� ≤
n∏

k=1

P�Xk ≤ xk�� (1.1)
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3664 Konstantinides and Loukissas

(2) Upper Negatively Dependent (UND) if for each n = 1� 2� � � � and all
x1� x2� � � � � xn�

P�X1 > x1� � � � � Xn > xn� ≤
n∏

k=1

P�Xk > xk�� (1.2)

(3) Negatively Dependent (ND) if both (1.1), (1.2) holds for each n = 1� 2� � � � and
all x1� x2� � � � � xn.

For the ND random variables, the follow properties hold, that are found in
Block et al. (1982, p. 769).

(1) If �Xk� k ≥ 1� are non negative UND then for each n ≥ 1

E

( n∏
i=1

Xk

)
≤

n∏
i=1

E�Xk��

(2) Let �Xk� k ≥ 1� are LND (UND) and �fk� k ≥ 1� be increasing functions, then
�f�Xk�� k ≥ 1� are still LND (UND).

(3) Let �Xk� k ≥ 1� are LND (UND) and �fk� k ≥ 1� be decreasing functions, then
�f�Xk�� k ≥ 1� are still LND (UND).

(4) Let �Xk� k ≥ 1� are ND and �fk� k ≥ 1� be increasing or decreasing functions,
then �f�Xk�� k ≥ 1� are still ND.

Let �Xn� n ≥ 1� be a sequence of non negative ND random variables with
common df F and finite mean �. We write F�x� = P�X ≤ x� and we denote the tail
by �F = 1− F . We say X (or its df F ) is heavy-tailed �F ∈ �� if

∫ �

0
exp��x�dF�x� = ��

for any � > 0, which means that there are no exponential moments.
We recall some important subclasses of heavy-tailed distributions. A

distribution F with positive support, belongs to the class �, if

lim
x→�

�F�x − y�

�F�x� = 1

holds for all y ∈ �−����.
A distribution F with positive support, belongs to � , if

lim
x→�

F ∗n�x�
�F�x� = n

holds for any n ≥ 2 (or equivalently for n = 2), where F ∗n denotes the nth
convolution of F .

A distribution F with positive support, belongs to the class �, if

lim sup
x→�

�F�xy�
�F�x� < �

holds for any 0 ≤ y ≤ 1 (or equivalently for y = 1/2).
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PLD for ND Random Variables with Long-Tailed Distributions 3665

A distribution function F with positive support, belongs to the class �, if the
following hold:

lim
y↘1

lim inf
x→�

�F�xy�
�F�x� = 1 or equivalently lim

y↗1
lim sup

x→�

�F�xy�
�F�x� = 1�

The following inclusions are well known:

� ⊂ � ∩� ⊂ � ⊂ � ⊂ ��

For more information about heavy-tailed distributions, see Embrechts et al. (1997).
In this article, we use the following notation. For two positive functions, a�·�

and b�·�,
a�x� ∼ b�x� if lim

x→�
a�x�

b�x�
= 1� a�x� � b�x� if lim sup

x→�
a�x�

b�x�
≤ 1

a�x� � b�x� if lim inf
x→�

a�x�

b�x�
≥ 1� a�x� = o�b�x�� if lim

x→�
a�x�

b�x�
= 0�

In this article, we are interested in probabilities of precise large deviations for
non random sums and random sums.

We denote

Sn =
n∑

k=i

Xk

as the partial sum and we consider the asymptotic relations

P�Sn − n� > x� � n�F�x + n�� (1.3)

as n → �, which holds uniformly when x ≥ 	n for any fixed 	 > 0 and

P�Sn > x� � n�F�x� (1.4)

as n → �, which holds uniformly when x ≥ 	n for any fixed 	 > 0.
The above relations are understood in the following sense:

lim inf
n→� sup

x≥	n

P�Sn − n� > x�

n�F�x + n��
≥ 1�

and

lim inf
n→� sup

x≥	n

P�Sn > x�

n�F�x� ≥ 1�

Let �Nt� t > 0� be a non negative integer valued process representing the claim
arrival process, independent of the sequence �Xk� k ≥ 1�� We denote 
t = ENt < �
for all 0 ≤ t < � and 
t → � as t → �. Further, the asymptotic relations of precise
large deviations for random sum of the type

St =
Nt∑
k=1

Xk� t > 0�
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3666 Konstantinides and Loukissas

become

P�St − �
t > x� � 
t�F�x + �
t�� (1.5)

as t → � uniformly for x ≥ 	
t and

P�St > x� � 
t�F�x�� (1.6)

as t → � uniformly for x ≥ 	
t.
Equivalently,

lim inf
t→� sup

x≥	
t

P�St − �
t > x�


t�F�x + �
t�
≥ 1�

and

lim inf
t→� sup

x≥	
t

P�St > x�


t�F�x�
≥ 1�

The first works in this field with i.i.d. random variables are Heyde (1967a,b, 1968)
and Nagaev (1969a,b). Later the large deviations were studied in the context of
regularly varying-tailed class of distributions in Nagaev (1973, 1979). Further,
we find in Cline and Hsing (1991) the precise large deviations over a larger
class of extended regularly varying-tailed distributions. A general approach on
subexponential distributions was examined in Pinelis (1985). The first article on
precise large deviations with random sums is Klüppelberg and Mikosch (1997).
In Mikosch and Nagaev (1998, 2001) there is a review of large deviations results
for heavy-tailed distributions. Recent results in this field are found in Tang et al.
(2001) and on the class of consistently varying-tailed distribution are found in Ng
et al. (2004). For independent but not identically distributed random variables some
results we met in Skučaitė (2004).

For a distribution F , the upper Matuszewska index 	F was introduced as
follows:

	�y� �= lim inf
x→�

�F�xy�
�F�x� � 	F �= inf

{
− log 	�y�

log y
� y > 1

}
�

We remember Bingham et al. (1987) a classical book on Matuszewska indexes. More
properties of Matuszewska indexes there exist in Cline and Samorodnitsky (1994).

Remark 1.1. We know from (Cline and Hsing, 1991, Th. 1.1) that the upper bound
in asymptotics at (1.3) and (1.4) is possible only in the frame of the subclass � .
Therefore, we study only the lower asymptotic bound for the class �.

The main results in the recent literature, that established for the precise large
deviations of ND random variables, are contained in the following propositions.

Proposition 1.1 (Tang, 2006, Th. 1.1 ). Let �Xk� k ≥ 1� be ND with common d.f.
F ∈� and mean 0 satisfying

xF�−x� = o��F�x��
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PLD for ND Random Variables with Long-Tailed Distributions 3667

as x → �. Then, for each fixed 	 > 0, holds

P�Sn > x� ∼ n�F�x�� (1.7)

uniformly for x ≥ 	n.

Proposition 1.2 (Chen and Zhang, 2007, Th. 1.2). Suppose �Xk� k ≥ 1� is a sequence
ND random variables with common d.f. F ∈ � and finite expectation � < 0 satisfying
xF�−x� = o��F�x�� independent of non-negative and integer-valued process �Nt� t ≥ 0�.
Assume that Nt satisfies

Assumption N1 �
Nt


t

P→ 1�

as t → �,and E
X1
r < � for some r > 1. Then for any fixed 	 > 
�
,

P�SNt
− �
t > x� ∼ 
t�F�x�� (1.8)

holds uniformly for x ≥ 	
t.

2. Large Deviations for Non-Random Sums

In the next Theorem, we extend the results on non-random sums, about precise large
deviations in a wider class of heavy-tailed distributions namely the long-tailed ones.

Theorem 2.1. Let �Xk� k ≥ 1� be a sequence of ND non negative random variables with
common distribution F ∈ � and finite mean �. Then for any 	 > 0

P�Sn − n� > x� � n�F�x + n��� (2.9)

holds uniformly for x ≥ 	n and

P�Sn > x� � n�F�x�� (2.10)

holds uniformly for x ≥ 	n.

Remark 2.1. It is worth mentioning that in (2.9) we obtain asymptotic relation
for centered partial sum with argument �x + n�� in the tail of the distribution F .
Equation (2.10) gives us the classical form of precise large deviations.

P�Sn − n� > x� ≥ P
(
Sn − n� > x� max

1≤i≤n
Xi > x + n�

)

≥
n∑

i=1

P�Sn > x + n�� Xi > x + n��

− ∑
1≤k<l≤n

P�Sn − n� > x�Xk > x + n��Xl > x + n��

≥
n∑

i=1

P�Xi > x + n��− �n�F�x + n���2
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3668 Konstantinides and Loukissas

≥ n�F�x + n���1− n�F�x���

So, we obtain

P�Sn − n� > x�

n�F�x + n��
≥ �1− n�F�x��

we know that for a sequence �Xk� k ≥ 1� of non negative random variables with
distribution F and finite mean, it

n�F�x� → 0

holds uniformly for x ≥ 	n as n → �. So, we obtain

n�F�x + n�� � P�Sn − n� > x� (2.11)

as n → �. Furthermore, if we use the relation (2.9) we obtain

P�Sn > x� = P�Sn − n� > x − n�� � n�F�x�� (2.12)

3. Large Deviations for Random Sums

Now we prove an asymptotic relation, when we have subexponential-tailed
distributions and a general integer valued counting process �Nt� t ≥ 0�.

Theorem 3.1. Let �Xk� k ≥ 1� be a sequence of ND non negative random variables with
common distribution F ∈ � and finite mean � independent of non negative and integer
valued process �Nt� t ≥ 0�. Assume Nt satisfies

Assumption N1 �
Nt


t

P→ 1�

as t → �, and that

Assumption N2 �
∑

k>�1+��
t

�1+ 
�kP�Nt = k� = o�1�

as t → �, for any � > 0 and some small enough 
 > 0. Then for any 	 > 0

P�SNt
− �
t > x� � 
t�F�x + �
t� (3.13)

holds, uniformly for x ≥ 	
t and furthermore

P�SNt
> x� � 
t�F�x�� (3.14)

holds uniformly for x ≥ 	
t.

Proof. We observe that

P�SNt
− �
t > x� =

�∑
k=1

P�Sk − �
t > x�P�Nt = k�
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PLD for ND Random Variables with Long-Tailed Distributions 3669

which we can split into three parts:

= ∑
k<�1−��
t

+ ∑
�1−��
t≤k≤�1+��
t

+ ∑
k>�1+��
t

�= I1 + I2 + I3 ≥ I2 + I3� (3.15)

where 0 < � < 1 is arbitrary. We deal with I2

I2 =
∑

��1−��
t�≤k≤�1+��
t

P�Sk − �
t > x�P�Nt = k�

≥ P�S��1−��
t�
− �
t > x�P

(
1− � ≤ Nt


t
≤ 1+ �

)
�

the Assumption N1 gives the asymptotic relation

I2 � P�S�1−��
t
− �1− ��
t� > x + �
t − �1− ��
t���

and from Theorem 2.1

I2 � ��1− ��
t��F�x + �
t�� (3.16)

Then from relations (3.16) we induce

lim
�→0

lim inf
t→� sup

x≥	
t

I2


t�F�x + �
t�
≥ 1� (3.17)

Finally, we consider the last sum

I3 =
∑

k>�1+��
t

P�Sk − �
t > x�P�Nt = k�

≤ ∑
k>�1+��
t

P�Sk > x + �
t�P�Nt = k��

Since F ∈ � then holds, the following (see Chistyakov, 1964). For any 
> 0, there
exist a positive fixed K = K�
� such that,

P�Sn > x� ≤ K�1+ 
�n�F�x��

Therefore

I3 ≤
∑

k>�1+��
t

�K�1+ 
�n�F�x + �
t��P�Nt = k�

≤ K�F�x + �
t�
∑

k>�1+��
t

�1+ 
�kP�Nt = k��

and the Assumption N2 leads to

I3 ∼ o�
t�F�x + �
t��� (3.18)

as t → �.
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3670 Konstantinides and Loukissas

Finally, substituting (3.17), (3.18) into (3.15), it yields to the relation (3.13).
Furthermore, if we use the relation (3.13) we obtain

P�SNt
> x� = P�SNt

− �
t > x − �
t� � 
t�F�x��

as t → � uniformly for x ≥ 	
t. �

For the practical applications of the previous theorem we consider two special
cases, the Poisson counting process and the renewal counting process.

Firstly, from (Klüppelberg and Mikosch, 1997, Lem. 2.1) we find that the
Poisson counting process satisfies the Assumptions N1 and N2.

Secondly, from (Klüppelberg and Mikosch, 1997, Lem. 2.3) we find that,
if �Yn� n ≥ 1� represents a renewal counting process �Nt� t > 0� and satisfies the
stochastic ordering relation

P�Y1 ≤ x� ≤ P�E1 ≤ x�� x ∈ � (3.19)

for an exponential random variable E1, then the renewal counting process Nt

satisfies both Assumptions N1 and N2. Hence, we conclude the following.

Proposition 3.1. Let �Xn� n ≥ 1� be a sequence of ND non-negative random variables
with finite mean and common distribution F ∈ � . Let �Nt� t > 0� be a Poisson counting
process. Suppose that the sequences �Xn� n ≥ 1� and �Nt� t > 0� are independent. Then
for any 	 > 0

P�SNt
− �
t > x� � 
t�F�x + �
t��

holds uniformly for x ≥ 	
t and

P�SNt
> x� � 
t�F�x��

holds uniformly for x ≥ 	
t.

Proposition 3.2. Let �Xn� n ≥ 1� be a sequence of ND non-negative random variables
with finite mean and common distribution F ∈ � . Let �Yn� n ≥ 1�, with E�Y1� < � and
var�Y1� < �, constitute a renewal counting process �Nt� t > 0� that satisfies the relation
(3.19). Suppose that the sequences �Xn� n ≥ 1� and �Nt� t > 0� are independent. Then
for any 	 > 0

P�SNt
− �
t > x� � 
t�F�x + n���

holds uniformly for x ≥ 	
t. and

P�SNt
> x� � 
t�F�x��

holds uniformly for x ≥ 	
t.
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