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RELIABILITY ESTIMATION OF A COMPLEX RENEWABLE SYSTEM
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Abstract

In this study an asymptotical analysis of the rehablhty of a complex renewable
system with an unbounded number of repalr units is provided. The system state is
given by a binary vector e(r) = [¢,(2),- - -, e,(?)], e,(t) = 0(1), if at moment ¢ the ith
element is failure-free (failed). We assurne that at the state e the ith element has
failure intensity 4,(e). At the instant of failure of every element the renewal work
begins and the renewal time has distribution function G;(t). Let E_ be the set of
failed system states. The goal of this study is the asymptotic estimation of the
distribution of the time until the first system failure, T = inf{¢: e()EE_ | e(0) = 0}.

RELIABILITY ASYMPTOTIC ANALYSIS; REGENERATIVE PROCESS

1. System description and problem statement

We examine a system of n elements, which can be in failure-free or failure state. The
system state is given through the element states as a binary vector

e(t) = [el(t)a eZ(t)s R en(t)]’

where ¢,(¢) = 0, if the ith element at moment ¢ is failure-free and ¢;(t) = 1 in the opposite
case. The set E = {e} of the system states is divided into two subsets £ = E,VE_,
where E, is the subset of the failure-free states and E_ is the subset of the failure states.
We assume that this division introduces a monotonic (coherent) structure (see Barlow
and Proschan (1975)). The failure intensity of the ith element depends only on the other
element states and is denoted by 4,(¢)>0, i = 1,- - -, n. Every element after its failure
enters the repair procedure immediately. The number of the repair units is unbounded.
We denote by 7 the repair time of the ith element, and G,(t) = P{n,<t},i=1,---,n
When the repair is completed the element comes back to its place at once.

The random process e(¢) so created describes the behaviour of the complex renewable
system. Let A(e) = Z;., 4;(e). This process represents a regenerative process of special
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type (see Barzilovich et al. (1983), p. 52), whose free period, when all the elements are
operational, has an exponential distribution with parameter 4(0) and the busy period has
a certain distribution ¢(x).

The main reliability characteristic of such a system represents the time until the first
system failure T = inf{¢: e(t)EE_ | e(0) = 0}. The distribution of 7, in' general, cannot
be found in a closed form. The estimation of this distribution by simulation modelling is
almost impossible to determine, because, in the case of highly-reliable systems, the
process e(t) changes its state many times before the system ultimately fails and the
simulation demands a very long period of computer time. However, based on the fact
that the repair time of the elements, in most real cases, is many times less than the
lifetime of the elements, we can use asymptotic methods for the reliability estimation.
Barzilovich et al. ((1983), p. 107) provide the following theorem. Let 4 = max,ez, A(€),
G(x)=min; Gi(x), T = j: xdG(x) and g be the probability of the system failure during a
regenerative period.

Theorem 1. If A(e), Gi(t), i=1,---,n and n change so that AT—0, then
P{A(0)gt >x}—e~".

(For a complete proof see Gnedenko and Solovyev (1975).)

In order to apply this theorem effectively for reliability estimations, it is necessary
to estimate the probability ¢, which in the majority of real systems cannot be found
in a closed form. An estimation of this kind was provided in Gnedenko and Solovyev
(1975), under the assumptions that the G;(¢) and n are fixed, there is the moment
j':’ x™*1dG(x) < oo, where m = max,eg, Z-, ¢ and the intensities 4;(e) have the form
A;(e) = AY(e)e, where A)(e) are fixed and ¢ — 0. In fact these conditions mean that all the
element reliabilities are of the same order and all the lifetimes of the elements are also of
the same order. In most real cases, this condition does not apply, because the failure
intensities 4;(e) and the lifetimes #; of different elements differ widely. In this case, the
estimation of g provided in this paper is not applicable.

The goal of the present paper is the estimation of the probability ¢ under certain
assumptions when, by the limit procedure, all the intensities 4;(e) and distributions G;(¢)
change in an arbitrary way.

We introduce certain concepts and notations. We call the path x a sequence of system
states that the process e(?) visits from the beginning of the busy period until the moment
of the system failure ‘n this period. That is, 7 = [0 = @, e, . . ., e™*D], where ¢ €
EN\{0},i=1,---,m,e™*YEE_. The set of all possible paths is denoted by 1= {x}.
A path 7 is called monotonic if e? < e+ i =0,- .-, m (here the order is component-
wise). The condition of monotonicity means that from the beginning of the busy period
and until the moment of the system failure, none of the failed elements has already been
repaired. The class of monotonic paths is denoted by I, and I1, = IT\I], is the class of
non-monotonic paths. A failure of an element in a path n is called essential if it has not
already been repaired before the system fails. Obviously, in monotonic paths all the
failures are essential.
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Let a busy period begin at moment 0 and let the process e(¢) pass through the path
m €I1,. The moments of the essential failures are denoted by x;, X, .-, Xpn.,
O=x<x;<+:: <Xp4y) At the moment X, ., a system failure takes place. From the
relation n, €I1,, it follows that in the interval (0, x,, . ;) (at least) one non-essential failure
appears. E

For every n; €I, there is a corresponding monotonic path n;, whose ordered sequence
of numbers of the failed elements coincides with the sequence of the numbers of the
essential failures. Conversely, for every m, €I, there is a corresponding class of
non-monotonic paths Il (7,) C I, whose zequence of numbers of the essential failures
forms the monotonic path .

We take only the non-essential failures from a path #, €I1,. They form certain (at least
one) busy periods, which terminate before the system failure at moment x,, . ,.

2. Estimation of the probability g

Let g(n) be the probability that a system failure appears in a busy period, specifically
through the path n. Then

g= 2 q(n)= Y q(m)+ ¥ q(m)=gq,+gq,.
x€I xElly nEll

The probability g, can be found as in Gnedenko and Solovyev (1975), p. 92:

A(mo)
A1(0)

f e f exp( — $(m))Gi, (1)) - - - G (U )y - - - du,,,

Am

(1) q(mg) =

where
A(rg) = 4, (0)A,,(eM) - - -4, (™), U =Xpoy—X, k=1, m,
s(me) = A(eM)uy — uy) + A(eDNu, — uz) + - - - + A(e™)u,,,
Ap ={(uy, sty >u>--->u,}, Gu)=1-G@u).

Since the number of monotonic paths is finite, the probability g, is expressed as a finite
sum of integrals like (1): g, = Z, en, (7).
In its turn the probability g(7,) can be estimated by a simpler expression. We denote

A(my)
A(0)

d(n) = f . f Giu(uy)+ - - Gyt )ty - - - dlty,
Am

and correspondingly ¢y = 2, e, 4(7).
First we show the equivalence between g, and ¢,.

Lemma 1. If A,(e) and G;(t) change so that

A 1 (= .
2) Z§C<w’ F.J; (1 —exp(— Ax))Gi(x)dx—0, i=1,---,n,
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where 4; = max,eg, Ai(€), 4 = Min,eg, .o A(€), T; = j.: xdG,(x), then ¢ = ¢,.

Proof. Let ebe aboundary failed state, in which the process e(¢) falls in following the
path . If, through this, failed elements correspond to the numbers i}, iy, + « « «, i, 4, then
in the state e the units lie in the positions with numbers i}, i,,- - -, i,, . We consider all
the monotonic paths that end at the state e, the last failure having number i, ,,. They
can be taken by permutation of the indexes (ij,- - -, i,,). The class of these paths is
denoted by Ilye, i,, ). Correspondingly,

dole, ims)= X q(m), do(e,ims))= X  d(m).

xoEIlg(e,m + 1) xoEllle,m +1)
We estimate the quantity

do(€, im+1) — qo(€; im+1)
do(e, im+1)

5 f f (1 — exp( — Zul»kf_’ll G (ue)due

2 f f | RORER

where the sums in the numerator and denominator are taken over all the permutations
(s, S3,* + *, S,y) Of the indexes (i, i,,- - -, i,,). Performing in every integral the reverse
permutation of the integral variables, we take

f f (1 — exp( — Attpay)) ﬁ G, (w)du
J; T H ka(uk)duk

0 km=i

0=

Scm+l

B,

B_ m+1

where u,,, = max, . But 1 — exp( — Aup,) = Z7-,(1 — exp( — Au)), so

19<cm+'k21 - f (1 — exp( — 114))G,, (1) — 0.

Hence, under the conditions (2), g(e, i,,+,) = gy(e, i,, +) and so

do= 2 (€, ins )= X do(€, im+1)= o
Cim+1 €im+1
where the sums are taken at first over all the numbers i,, ., of the failed elements in the
state e and then over all the boundary failed states e. The lemma is proved.

Further, we show that g, = 0(q,) = 0(4,) applies under certain conditions. For this, we
introduce some concepts in order to estimate the probability g,. Let 7, be a monotonic
path. We have already introdued above the class of the non-monotonic paths I1,(n,). We
divide this class into two subclasses: I1,(n;) = I1j(m;) U I14(n,), where IT{(m,) is the class
of the non-monotonic paths, whose first essential failure occurs at the instant of the
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beginning of the busy period, and IT" (o) = I1,(7) \ IT;(n,). Correspondingly the class of
the non-monotonic paths I1, is divided into two subclasses II, =IIj UII], If =
Unen, (), T1F = Uyen, I17(%). We introduce the corresponding notation for the
probabilities

gm)y= 3 4q(@), 4qim)= % q(m),

xiEI1§(n0) x1E11"1(%0)

gi= Y qiny), ¢q%= X q9i(m), a=4g+4q"
&I, xo=llo

Lemma 2. If the conditions (2) are fulfilled, then

(3) qi = 0(qo)

Proof. At moments x;, =0<x, < - -+ <Xp4g essential failures occur. For the sake
of definiteness and without loss of generality, let 1, 2,- - -, m + 1 be the numbers of the
elements of these failures. Obviously, the probability g}(7,) is less than the probability of
the following event. In a busy period failures of the elements with numbers
1,2,---,m+ 1 occurred (the first of them at the opening of the busy period) and in the
interval between the first and last failure more (at least one) failures occurred. The
probability of the last event can increase only if we change all the intensities 4;(e) to 4;
and, apart from that, require that every failed element is immediately replaced by a new
one. Then

A(ﬂo)
A(0)

q1(m) =

f’ . f (1 — exp( _meﬂ»Gx(me)Gz(xmﬂ —X2)

Am
o G (Xma1 — X)Xy e+ Xy 11,
where
A =241 - Apmits By ={02 s X 1): 0< <Xy <+ v+ <Xy}
After changing the variables u; = X, 41, Y = Xm+1 — Xk, K =2,- - -, m we have

1-\(7!0)
2(0)

qi(mp) =

[+ [ = exp(= 2uNGi)- - - Gttty -t
Am
As in Lemma 1, we now sum the last inequality over all the monotonic paths 7, which

are taken from the permutations of the numbers 1,2, - -, m with fixed last number
m + 1. Then using the notation of Lemma 1 we have:

Y gi(m)=gqi(e,m + 1)
xE€ElNge,m+1)

< A(my)

=30 fo fo (1 — exp( = At ))Gr(11) - - - ot )ity - - ity

On the other hand, as was proved in Lemma 1, gi(e, m + 1) = ¢o(e, m + 1) and
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qile,m + 1)
qo(e, m + 1)

_gqile,m+1)
qO(ea m + l)

< A fo fo (1 — exp( — Ata)) Gy (1))« - - G (s )ty - - - dty,
A(mp) J;w e J‘o‘” Gl(ul). . .Gm(um)dul e du,

§Cm+l ﬁ _1_
k=1 T}

j; ) (1 — exp( — Au))G (. )du, — 0,

where A(m) =44 -4, and the last inequality is proved in Lemma 1. Thus
qi(e, m + 1) = o[q,(e, m + 1)]. After summing the last relation, as in Lemma 1, we take
qi = 0(q,) = 0(q,)- The lemma is proved.

Lemma 3. If all the parameters and distributions change in such a way that the
following conditions are fulfilled:

X

I<e<w, IAT,—0, i=1,---,n,

Rt

then
4) q1=o0(qy).

Proof. We examine a mqnotonic path =, the element failures of which correspond to
the numbers 1, 2,- - -, m + 1. It is easy to remark that the probability g%(m,) does not
exceed the probability of the following event: at moments X, X, -, Xpi1
O<x<x,<:++<Xn4) clements fail with numbers 1, 2,---, m + 1 and the busy
period, which began at moment 0, does not finish until the moment x,. This probability,
in its turn, increases only if, as in Lemma 2, we change all the 4,(¢) to 4; and require that
every element at the moment of its failure is replaced by a standby. Then

‘I'i(ﬂo)—f-A(ﬂo)f"’f d)(xl)Gl(xm-H—xl)"'Gm(xm+l_xm)dxl"'dxm-#-la

A

whare A= {(x},"* *, X 4+1): 0< X, < - - - <X,,,,}, and O(x;), as we can easily see, is the
distribution function of the busy period for the queueing system M/G/w with input
intensity 4 =27, A, and the distribution function of the service time Gy(x)=
= (L/A)G(x). We change the variables u;, = x;, 4y =X — X, k=2,-+-, m + 1.
Then the last inequality takes the form: '

A _
2%(n) = A((’(.;‘;) [ [ SwIGw)- Gt )ity -t

Am+1
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where Ay 41 = ((Uy, * *5 Upm41): 4 >0,0<, <+ <, }. The integral {° B(x)dx =
T is the mean length of the busy period in the system M/G/c0. We know (see Klimov
(1966)) that T = (1/AXexp(ATp) — 1), where T,=(1/A)Zf., 4T, and it is the mean
service time in the system M/G/c. Integrating the last inequality over u;, we take

1-\(7‘0)
A(0)

q'(m) =

Tff G, « - Gp(uy)du, - - -du,,.
Am

If we sum this inequality over all the montonic paths from the class Ilye, m + 1),
we take

” Am) o
qe,m+1)= 70 Tkll T.

On the other hand, as proved,

A(my) =
e,m+l)§—? Ta
ol 70) on k
whence
"(e,m + 1 .
gile.m+1)_.s,

q-O(e’ m + 1) =

+1

Since AT, =27, L,T, =A2f_, T, —0, then A(0)T = AT = "o — 1 — 0, that is
qi(e, m + 1) = o[go(e, m + 1)] = o[gy(e, m + 1)].

After summing this relation over all m + 1 and over all boundary states e, we take
q" = 0(dy) = 0(qy)- The lemma is proved.

Corollary 1. Under the conditions of Lemma 2 the following applies:
(5) 4, = 0(do) = 0(qo)-

Indeed, from the conditions of Lemma 2 it follows (see Barzilovich et al. (1983)) that
AT, — 0, and this means that the conditions of Lemma 3 are fulfilled. Then, adding the
relations (3) and (4) we obtain (5).

From Theorem 1 and the last corollary we get the following result.

Theorem 2. If the parameters A,(¢) and the distribution functions G;(x) change
so that

S

b

: 1 = .
‘Sc<c, ?f (1 —exp(— Ax))Gi(x)dx =0, i=1,---,n,
ivo

then
(6) lim P{A(0)got > x} ="~

Remark 1. Let & be a non-negative random variable witk distribution function
F(x) and mean T. We say that £ tends to zero (by Khinchin) and we write ¢ L 0, if
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(1/T) j:’ (1 — e~ *)F(x)dx —0. Then the main condition of Theorem 2 is written as
n=20,i=1,---,n.

Remark 2. The condition Az, X! 0 seems to be minimal. For the simpler model
M/G/o0, which is included in our model (as failure we understand the fall of the process
to the state m + 1), Yu. A. Veretenikov provided a counterexample (coursework,
Moscow State University, 1972), which shows that for a slightly weaker condition
AT;—0,i =1,. - -, nthe principle of monotonic paths (4) does not apply; in other words,

q; # 0(9o).

3. Estimation of the probability g, in a parametric model

We now examine a parametric model of a complex renewable system with an
unbounded number of repair units, where we can asymptotically simplify the expression
for q,.

We assume that the failure intensities have the form A4,(e)e* and the distribution
functions of the repair times have the form G;(¢/e#), where 4,(e), G:(t),a; = 0and 8, >0
are fixed and ¢ — 0. We note that by choosing a proper time unit we can always have that
at least one «;, for example «,, is equal to zero. A model of this kind was introduced and
studied on a semiheuristic level by I. N. Kovalenko, who estimated the stationary
probabilities of the process e().

For every monotonic path n, where failed elements have numbers 1,2,---, m + 1,
the quantity ¢(m,) has the form

T, u Um
((0(;) scul-f-az2+.--+czm+l f. R .f Gl <;ﬁi|) PR Gm (.87,:> dulduz. . .dum’
Am

where A(mp) = 4,(0)A,(eV)- - - 4,, . 1(e"™), and A,, is defined in the first paragraph. Now we
shall show that the main part is included in only a small proportion of the whole class of
monotonic paths.

We study first the paths belonging to the class Ily(e, m + 1). Obviously, without loss
of generality, we can consider g, =B, = - - - = B,. We divide the class IIy(e, m + 1),
which is taken from the permutations of the numbers 1, 2,. . -, m, into two subclasses:
Ily(e, m + 1) denotes the subclass of paths which are given by any permutation
(ky, kyy+ - -, k) for which B =B,=---=p applies and Il (e,m+1)=
ITy(e, m + 1)\ Ily(e, m + 1). For this subclass, for at least one s, ;. > B, ., applies. Let
us correspondingly denote:

A
(7 q(my) = 1

doole,m+1)= Y qm), gquleem+1)= T  q(m)
roEloo(e,m + 1) no€EMoi(e,m +1)
Lemma 4. If the means T, = j: G,(x)dx,i=1,-- -, nexist, then for e =0,
(8) doi(e, m + 1) = o[gg(e, m + 1)].

Proof. We denote by I(A)=1I(A4, x,,- - -, X,,) the indicator (characteristic function)
of the set 4. The set A is given by inequalities in regard to arguments x,,- - -, X,,. We
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examine the integral in the right member of (7) for an arbitrary path from Ily(e, m + 1),
given by permutation of the (k, k;, - « -, k»):

Xm
J(no)_ f f le <£pk) . ka (8”‘;) dX1- . .anl
=Lm"‘Lw1(xl>x2 >xm)le<-§k>"'G <sﬂk>dxl dx

and we change the variables x;/e#% = u;. Then , ,
J(n'o) =ght +hu j;m . e foo I(gﬁklul > e > gﬂkmum)le(ul). . 'Gk,.(um)dul . .dum
0
&)

= eht o thag (my).

We note that the indicator, which stays under the integral, can be written as a product:

m—1
I, > Py, > - - - > ey, ) = [ TP, > ePloviu ).

s=]
If nyEI1yy(e, m + 1), then for e =0,

I(u: >us+l)’ ifﬂk, =ﬂk;+|,
1, if By, <PBi,..

Since G;(x)>0 in a neighbourhood of zero, the limit is positive lim,_, A4, (%) =
A(my) > 0. Further, since

A (m) = J; tet J; Gk.(ul)' . 'Gk..(um)dul cordiy, =T Ty, - Ty, =TT, - - T,

(10) lim I(eP*u, > eflrrus, ) = {

then this limit is bounded. If the path m,EIly (e, m + 1), then for at least one s
Bi, > By, and so the limit of the indicator is equal to zero:

lim I(e%u, > efksu, ) =0,

e—0
over a set of complete measure in R} . Then lim,_ A4,(m,) = 0. The lemma is proved.

Remark 3. Let n,€Ilyy(e, m + 1), that is i, =B, = - -+ =Pk, and Bk, = pk, =
« =Pk, <Pk = =Bk, <--- <ﬂk,l+, = ... =fk,. Then the limit integral
can be transformed by force (10) to the product:

A(ﬂo) = ling 148(7t0)

1
= H f. - .f le,+l(ul). ' .G-kliﬂ(us,ﬂ—h)dul ° .du5i+l_5l’
=0

L UPSEE
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where s, = 0, 5,4, = m. By force of the initial condition g, =8, = - .- =B, every ith
group of indexes (k.- - -,k,,,) presents a cCertain permutation of the indexes
(s;+ 1, - -, 5;41). The A(m) has an especially simple expression in the case of §;, <, <
« « « < B, Then the class I1y(e, m + 1) includes one path iy = (1, 2,- - -, m, m + 1)and
A(m) =TT, - - T,. :

In this way we have shown that

40(8, m + l)zA(e, m + l)8a|+...+a_ﬂ+p!+...+ﬂ-’

where A(e, m + 1) is easily found from the expressions (7) and (9) (we must additionally
consider that since ; = O applies for a certain i, it follows that A(0) = 4,(0) > 0). Hence
for the arbitrary path =, given by the numbers of failures 1,2,- .-, m + 1 for ¢ —0,
dole, m + 1)=A(e, m + 1)e™™, where y(mp) =, + -+ +apy+ b+ - +Bn We
Write yo=min.ep, 7(7,) and examine the subclass of the monotonic paths I1y, for which
Y(m) = yoand B, < B, < - - - = B, and we write doo = Z,en do(7)- The above reasoning
finally leads to the following assertion.

Theorem 3. IfthemeansT; = f; Gi(x)dx,i=1,- - -, nexist, then fore —0, g = qoo-
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