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NOTATION AND TERMINOLOGY

Let (X,T ) be a topological space. There are various

definitions of compactness for topological spaces which are

equivalent in ZFC (Zermelo-Fraenkel set theory + Axiom of

Choice AC), but split in ZF (Zermelo-Fraenkel set theory minus

AC). Here, we use the Heine-Borel definition of compactness,

that is,

X is compact if every open cover ofX has a finite subcover.

X is countably compact if every countable open cover of

X has a finite subcover.

X is Lindelöf if every open cover of X has a countable

subcover.
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Let X be a non empty set.

2X denotes the Tychonoff product of the discrete space

2 = {0,1} and,

BX = {[p] : p ∈ Fn(X,2)},

where Fn(X,2) is the set of all finite partial functions from

X into 2 and

[p] = {f ∈ 2X : p ⊂ f},

will denote the standard (clopen) base for the topology on

2X . For every n ∈ N, let

BnX = {[p] ∈ BX : |p| = n}.

We call the elements of BnX , n ∈ N, n-basic open sets of

2X . Clearly,

BX = ∪{BnX : n ∈ N}.
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For n ∈ N, 2X is compact-n if every cover U ⊂ BnX of 2X

has a finite subcover.

TP(2X) : 2X is compact.

TPC(2X) : 2X is countably compact.

BPI (Boolean Prime Ideal Theorem) : Every Boolean algebra

has a prime ideal.

UF(ω) : There exists a free ultrafilter on ω.

CAC : AC restricted to countable families of non empty sets.

CAC(R) : CAC restricted to countable families of non empty

sets of reals.
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KNOWN RESULTS

1. J. Mycielsky (1964) : BPI iff ∀X , 2X is compact.

2. J. Truss (1984): Use of compactness of 2R in his research.

3. P. Howard and J. E. Rubin (1998) : Is the statement ‘‘2R

is compact" provable in ZF?

4. K. Keremedis (2000) : It is relatively consistent with ZF

that 2R is not compact.

5. K. Keremedis (2005) : CAC, hence CAC(R), does not

imply TP(2R) in ZF.

6. K. Keremedis, E. Felouzis, E. Tachtsis (2007) : It is relatively

consistent with ZF that 2R is not countably compact.
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PROBLEMS

In the paper:

K. Keremedis, E. Felouzis, E. Tachtsis, On the compactness

and countable compactness of 2R in ZF, Bull. Polish Acad.

Sci. Math. 55 (2007), 293-302

the following questions are asked:

(1) Does CAC(R) imply TPC(2R) in ZF?

(2) Does TPC(2R) imply TP(2R) in ZF?

The above problems are the motivation of this paper.
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In this paper, we shall show that:

(1) BPI iff for every set X and for every n ∈ N\{1}, 2X is

countably compact and compact-n.

In particular, TP(2R) iff TPC(2R) + ‘‘2R is compact-n for

every n ∈ N\{1}".

(2) CAC + UF(ω) implies (∀X) TPC(2X).

(3) CAC, hence CAC(R), does not imply ‘‘for all integers

n > 1, 2R is compact-n" in ZF.

(4) It is not provable in ZF that for every infinite set X and

for every n ∈ N, TPC(2X) implies 2X is compact-n. In

particular, it is not provable in ZF that for every infinite set X ,

TPC(2X) implies TP(2X).
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MAIN RESULTS

Theorem 1 Let X be a set and let n ∈ N\{1}. If 2X is

compact-n, then every disjoint family of n-element subsets

of X has a choice function. In particular, the statement

‘‘∀X , ∀ n ∈ N, 2X is compact-n" is not a theorem of ZF.

Proof. Fix a disjoint family A = {Ai : i ∈ I} of n-element

subsets ofX . By way of contradiction assume thatA has no

choice function. Then

U = {[p] : ∃ i ∈ I, p ∈ 2Ai, (p ≡ 0∨ |p−1(1)| ≥ 2)}

is an n-basic open cover of 2X which clearly has no finite

subcover. This contradicts the fact that 2X is compact-n.

For the second assertion, we use Cohen’s second forcing

model in which there is a countable disjoint family of 2-

element subsets of P(R) having no choice function in the

model. Thus, 2P(R) fails to be compact-2 in this model.

5



Remark 1 (1) It is provable in ZF that for every set

X, 2X is compact-1. (Let U be a 1-basic open cover
of 2X . If U has no finite subcover, then for every
x ∈ X, the family

Ux = {O : O is open in 2 and π−1
x (O) ∈ U}

is not a cover of 2. For each x ∈ X, let ux be the
least element of 2\(∪Ux). Then (ux)x∈X /∈ ∪U , a
contradiction.)

(2) The implication of the previous theorem is not

reversible in ZF. In particular, it is relatively consis-
tent with ZF that there exists a set X such that for all
n ∈ N, every disjoint family of n-element subsets of X
has a choice function, while 2X fails to be compact-n.
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Lemma 1 Let n ∈ N\{1}. If 2X is compact-n, then 2X is

compact-m for all integers m < n.

Proof. Fix an integer m < n and let V ⊂ BmX be a cover of

2X . Put

W = {W ∈ BnX : ∃ V ∈ V, W ⊂ V }.

Clearly,W is a cover of 2X , hence by hypothesis, it has a

finite subcover, say {Wi1,Wi2, . . . ,Wik} for some k ∈ N.

For each j ≤ k choose Vij ∈ V s/t Wij ⊂ Vij .

Then {Vi1, Vi2, . . . , Vik} is a finite subcover of V , finishing

the proof of the lemma.

Theorem 2 The following are equivalent in ZF:

(1) BPI.

(2) ∀X , ∀ n ∈ N, 2X is countably compact and compact-

n.
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Proof. It suffices to show that (2)→ (1). Invoking Mycielski’s

result we show that for every set X , 2X is compact, so let

X be any (infinite) set and let U be a basic open cover of

2X .

For each n ∈ N, let

On = ∪{[p] ∈ U : |p| = n}.

Clearly, O = {On : n ∈ N} is an open cover of 2X and

since 2X is countably compact, O has a finite subcover,

sayQ = {Oi1, Oi2, . . . , Oir}. Then

R = {[p] ∈ U : ∃ j ≤ r, |[p]| = ij, [p] ⊂ Oij}

is a cover of 2X .

Let i∗ = max{i1, i2, . . . , ir}.

Since 2X is compact-i∗, it follows by the previous Lemma

thatR has a finite subcover, hence U has a finite subcover

as required.
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K. Keremedis, E. Felouzis, E. Tachtsis (2007) :

BPI ⇔ (∀X , 2X is Lindelöf) + CACfin

(CACfin = Countable choice for non empty finite sets).

We improve the above result here by showing that:

Theorem 3 The following are equivalent in ZF:

(i) BPI.

(ii) For every set X , 2X is Lindelöf.

(iii) For every set X , every basic open cover of 2X has a

countable subcover.

Proof. (i)→ (ii) and (ii)→ (iii) are straightforward.
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(iii)→ (i). It suffices to show that (iii)⇒ CACfin.

To this end, let

A = {Ai : i ∈ ω}

be a disjoint family of non empty finite sets.

(iii) implies that every non countable subset of 2∪A has a
limit point.

Indeed, let G be a non countable subset of 2∪A. Towards

a contradiction, suppose thatG has no limit points, thenG is

a closed set. Consider the following collection of basic open

subsets of 2∪A:

U = {[p] ∈ B2∪A : (|[p]∩G| = 1)∨ ([p] ⊂ 2∪A\G)}.

Clearly, U is a cover of 2∪A, hence by our hypothesis, U
has a countable subcover, say V . It can be readily verified

that |G| ≤ |W|, where

W = {[p] ∈ V : |[p] ∩G| = 1}.

Thus, G is a countable set. This is a contradiction.
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For each i ∈ ω, let

Bi = {f ∈ 2∪A : (∀ j ≤ i, |f−1(1) ∩Aj| = 1)

∧ (∀ j > i, Aj ⊂ f−1(0))}.

Clearly, |Bi| < ℵ0 for all i ∈ ω. Put

B = ∪{Bi : i ∈ ω}.

We consider the following two cases.

(1) |B| = ℵ0. Then fixing an enumeration for B and

picking the least element from each Bi with respect to

the prescribed enumeration ofB, we may easily define

a choice function ofA.

(2) |B| 6= ℵ0. Then B has a limit point, say g. We assert

that |g−1(1) ∩ Ai| = 1 for all i ∈ ω. Assuming the

contrary, it follows that |g−1(1) ∩Ai0| 6= 1 for some

i0 ∈ ω. There are two cases:
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(i) Ai0 ⊂ g
−1(0). Then

Og = [{(x,0) : x ∈ Ai0}]

is a neighborhood of g meeting at most

∪{Bj : j < i0} which is a finite set. This is a con-

tradiction since g is a limit point of B, hence every

neighborhood of g must meet B in an infinite set (2∪A

is a Hausdorff space).

(ii) |g−1(1) ∩ Ai0| ≥ 2. Let x, y ∈ Ai0 be such that

g(x) = g(y) = 1. Consider the neighborhood

Og = [{(x,1), (y,1)}]

of g. By the definition of B, it readily follows that Og ∩
B = ∅, and we have reached again a contradiction.

From cases (i) and (ii) we infer that for all i ∈ ω, |g−1(1) ∩
Ai| = 1 as asserted. Then, C = g−1(1) is a choice set of

A.
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Theorem 4 In ZF, CAC + UF(ω) ⇒ (∀X) TPC(2X), where

CAC = Countable axiom of choice,

UF(ω) = there exists a free ultrafilter on ω,

TPC(2X) = 2X is countably compact.

Proof. Let X be any infinite set. Fix a nested family

G = {Gi : i ∈ ω} of closed subsets of 2X . Towards

a contradiction, assume that
⋂
G = ∅. By CAC, let C =

{fn : n ∈ ω} be a choice set of {Gn\Gn+1 : n ∈ ω}.
Let, by UF(ω), F be a free ultrafilter on C . Put

H = {Y ⊂ 2X : Y ∩ C ∈ F}.

Then H is an ultrafilter on 2X , and since, in ZF, every

ultrafilter on 2X converges, it follows that H converges to

a point g ∈ 2X . Since F is free, it follows that for every

open neighborhood Og of g, Og ∩ C is an infinite set. Thus,

g ∈
⋂
G. This is a contradiction, finishing the proof of the

theorem.
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Theorem 5 In every permutation model of ZFA,

CAC implies 2X is countably compact for every infinite set

X .

Proof. In every permutation model, R is well orderable (being

a pure set), hence UF(ω) holds.

Theorem 6 It is not provable in ZF that for every infinite setX

and for every n ∈ N, TPC(2X) implies 2X is compact-n.

In particular, it is not provable in ZF that for every infinite set

X , TPC(2X) implies TP(2X).

Proof. We exhibit a permutation model of CAC + UF(ω) + ¬
BPI. Similarly to Cohen’s second model, the forcing analogue

of the permutation model can be constructed having the

desired properties.

The set of atoms A has size ℵ1 and A is a disjoint union of

ℵ1 pairs Ai = {ai, bi}, i ∈ ℵ1.

Let G be the group of permutations of A which fix each Ai.
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Let F be the (normal) filter generated by the subgroups

fix(E) = {π ∈ G : ∀e ∈ E, π(e) = e},

where E is a countable subset of A. Thus, the normal ideal

of supports is the set of all countable subsets of A.

LetN be the permutation model determined by G and F .

Then the following hold:

(1). The family B = {Ai : i ∈ ℵ1} has no choice function

in N . Therefore, BPI is false in N . In particular, 2A is not

compact-2 inN .

(2). Due to the countable supports and the regularity of

ℵ1, every function on ω with values in N belongs to N ,

hence DC (= principle of dependent choices), and thus

CAC, holds inN .
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Since UF(ω) holds in N , it follows, by CAC + UF(ω) in N ,

that TPC(2X) holds in N for every set X . Hence, the

independence result.

Remark 2 It is known (Howard, Keremedis, Rubin, Stan-
ley, 2000) that, in ZF, the Tychonoff product of count-
ably many compact spaces is countably compact iff it
is compact. By Theorem 6, this ceases to be true in ZF
if we consider Tychonoff products of non-countable

families of compact spaces.
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Theorem 7 For every integer n > 1, ‘‘2R is

compact-n" implies ‘‘every familyA of≤ n-element subsets

of P(R) such that
⋃
A is disjoint, has a choice set".

In particular, the statement ‘‘for every integer

n > 1, 2R is compact-n" is not provable in ZF.

Proof. The proof is by induction on n.

For n = 2, assume that 2R is compact-2.

Let A = {Ti : i ∈ I} be a family of 2-element subsets of

P(R) such that ∪A is disjoint.

By way of contradiction assume thatA has no choice set.

Consider the following collection of 2-basic clopen subsets

of 2R.
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U = {[p] ∈ B2
R : (∃a ∈ 2) ∧ (∃i ∈ I, ∀X ∈ Ti,

|p−1(a) ∩X| = 1)}.

We assert that U is a cover of 2R.

Indeed, let f ∈ 2R. If f /∈ ∪U , then

for every i ∈ I , f separates the elements of Ti, that is,

∃X ∈ Ti such that f |X ≡ 0 and f |(∪Ti)\X ≡ 1.

It follows that f−1(0) (or f−1(1)) is a choice set of the

family A, contradicting our assumption that A admits no

choice sets.

Therefore, f ∈ ∪U and U is a cover of the Tychonoff

product 2R.

On the other hand, U has no finite subcover, contradicting

the fact that 2R is compact-2. Hence, A has a choice set

as required.
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Assume that for all m < n, if 2R is compact-m, then every

family A of ≤ m-element subsets of P(R) such that
⋃
A is

disjoint, has a choice set.

We show the result under the premise that 2R is compact-n,

where n > 2. By Lemma 1 we have

(∗) 2R is compact-m for all m < n.

Fix a family A = {Ti : i ∈ I} of ≤ n-element subsets of

P(R) such that
⋃
A is disjoint.

In view of (∗), the induction hypothesis, and the fact that

P(n) is finite, we may assume, without loss of generality,

that |Ti| = n for all i ∈ I .

By way of contradiction suppose that A does not have any

choice sets.

Consider the following collection of n-basic clopen subsets

of 2R.
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U = {[p] ∈ BnR : (∃a ∈ 2) ∧ (∃i ∈ I, ∀X ∈ Ti,

|p−1(a) ∩X| = 1)}.

We assert that U is a cover of 2R. To see this, let f ∈ 2R. If

f /∈ ∪U , then

∀i ∈ I , ∃X,Y ∈ Ti such that f |X ≡ 0, f |Y ≡ 1.

For every i ∈ I , let Si = f−1(0) ∩ Ti. Then Si is a non

empty proper subset of Ti and since A has no choice set,

|Si| > 1 for all i ∈ I .

On the other hand, since for all i ∈ I , the set Ti has n

elements, it follows that

∃m < n such that |Si| ≤ m for all i ∈ I .
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Letm0 be the least suchm. Sincem0 < n, 2R is compact-

m0, hence by (IH) we have that

B = {Si : i ∈ I},

hence A, has a choice set. This contradicts our assumption

onA. Thus, U is a cover of 2R.

On the other hand, U has no finite subcover, contradicting

the fact that 2R is compact-n. Thus,A does have a choice

set. The induction terminates as well as the proof of the first

assertion of the theorem.

For the second assertion of the theorem, we invoke Fefer-

man’s forcing model. In this model, the family

A = {{[X], [ω\X]} : X ⊂ ω},

where

[X] = {Y ⊂ ω : |X4Y | < ℵ0}

has no choice function.
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Thus, the statement ‘‘2R is compact-2" is not valid in Fefer-

man’s model, and even more (by Lemma 1) 2R fails to be

compact-n for every integer

n > 1. This completes the proof of the theorem.

Theorem 8 It is not provable in ZF that CAC implies ‘‘for all

integers n > 1, 2R is compact-n".

Proof. In Feferman’s model, AC for well orderable families

of non empty sets, hence CAC, holds whereas by the proof

of the second assertion of the previous Theorem, 2R fails to

be compact-2 in the model.
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