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NOTATION AND TERMINOLOGY

Let (X,T) be a topological space. There are various
definitions of compactness for topological spaces which are
equivalent in ZFC (Zermelo-Fraenkel set theory + Axiom of
Choice AC), but split in ZF (Zermelo-Fraenkel set theory minus
AC). Here, we use the Heine-Borel definition of compactness,
that is,

X is compact if every open cover of X has a finite subcover.

X is countably compact if every countable open cover of

X has a finite subcover.

X is Lindelof if every open cover of X has a countable

subcover.



Let X be a non empty set.

2X denotes the Tychonoff product of the discrete space

2={0,1} and,

Bx ={lp] : p € Fn(X,2)},

where Fn( X, 2) is the set of all finite partial functions from
X into 2 and

lpl = {f €2* :pC f},

will denote the standard (clopen) base for the topology on
2X  For every n € N, let

Bx = {lp] € Bx : |p| =n}.

We call the elements of B"}(, n € N, n-basic open sets of

2X Clearly,

BXZU{B%ZTL€N}.
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Forn € N, 2X is compact-n if every cover U C B’ of X

has a finite subcover.
P2X) : 2X is compact.
TPC(2X ) : 2X is countably compact.

BPI (Boolean Prime Ideal Theorem) : Every Boolean algebra

has a prime ideal.

UF(w) : There exists a free ultrdfilter on w.

CAC : AC restricted to countable families of non empty sets.
CAC(R) : CAC restricted to countable families of non empty

sets of reals.
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KNOWN RESULTS

1. J. Mycielsky (1964) : BPI iff V X, 2X s compact.

2. J.Truss (1984): Use of compactness of 2R in his research.

3. P. Howard and J. E. Rubin (1998) : Is the statement “oR
is compact" provable in ZF?

4. K. Keremedis (2000) : It is relatively consistent with ZF
that 2R is not compact.

5. K. Keremedis (2005) : CAC, hence CAC(R), does not
imply TP(2R) in zF.

6. K. Keremedis, E. Felouzis, E. Tachtsis (2007) : It is relatively
consistent with ZF that 2R is not countably compact.



PROBLEMS

In the paper:

K. Keremedis, E. Felouzis, E. Tachtsis, On the compactness
and countable compactness of pL ZF, Bull. Polish Acad.
Sci. Math. 85 (2007), 293-302

the following questions are asked:

(1) Does CAC(R) imply TPC(2R) in ZF?

(2) Does TPC(2R) imply TP(2R) in ZF?

The above problems are the motivation of this paper.



In this paper, we shall show that:

(1) BPIff for every set X and for every n € N\ {1}, 2% is

countably compact and compact-n.

In particular, PRy iff TPC2Ry + » 2R s compact-n for
every n € N\{1}"

(2) CAC + UF(w) implies (V.X) TPC(2-%).

(3) CAC, hence CAC(R), does not imply *‘for all integers
n>1,2Rj compact-n" in ZF.

(4) It is not provable in ZF that for every infinite set X and
for every n € N, TPC(QX) implies 2<% is compact-n. In
particular, it is not provable in ZF that for every infinite set X,
TPC(2X) implies TP(2-%).
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MAIN RESULTS

Theorem 1 Let X be a set and let n € N\{1}. If 2% is
compact-n, then every disjoint family of n-element subsefts
of X has a choice function. In particular, the statement
W X,VneN,2% s compact-n" is not a theorem of ZF.

Proof. Fix a disjoint family A = {A; : i € I} of n-element
subsets of X . By way of contradiction assume that .4 has no
choice function. Then

U={[p]:Ficl, pe2di (p=0ov|p (1) >2)}

is an n-basic open cover of 2X which clearly has no finite
subcover. This contradicts the fact that 2<% is compact-n.

For the second assertion, we use Cohen’s second forcing
model in which there is a countable disjoint family of 2-
element subsets of P(IR) having no choice function in the
model. Thus, QP(R) fails to be compact-2 in thismodel. =



Remark 1 (1) It is provable in ZF that for every set
X, 2% is compact-1. (Let {/ be a 1-basic open cover
of 2. If U has no finite subcover, then for every
x € X, the family

Uy = {O : Ois openin 2 and 7; 1(0) € U}

is not a cover of 2. For each x € X, let u, be the
least element of 2\ (UlU). Then (uz)zcx ¢ UU, a

contradiction.)

(2) The implication of the previous theorem is not
reversible in ZF. In particular, it is relatively consis-
tent with ZF that there exists a set X such that for all
n € N, every disjoint family of n-element subsets of X
X

has a choice function, while fails to be compact-n.



Lemma 1 Letn € N\{1}. If 2% is compact-n, then 2 is
compact-m for all infegers m < n.

Proof. Fix an integer m < n and let V C B be a cover of
24X put

W={WeB%:3Vvey WcCV}

Clearly, VV is a cover of X , hence by hypothesis, it has a

finite subcover, say {W;., W; - Wzk} forsome k € N.

17 o

For each 57 < k choose Véj cVs/t Wij C Vij.

Then {V;;, Vi,,- .., V;, } is afinite subcover of V, finishing
the proof of the lemma. u

Theorem 2 The following are equivalent in ZF:
(1) BPI.

@OV X, VneN, 2% s countably compact and compact-

n.



Proof. It suffices to show that (2) — (1). Invoking Mycielski’s
result we show that for every set X, 24X s compact, so let

X be any (infinite) set and let U be a basic open cover of
2X

Foreachn € N, let

n = U{[p] €U : |p| = n}.

Clearly, © = {Oy, : n € N} is an open cover of 2% and
since 2X is countably compact, O has a finite subcover,

say @ = {0;;,0;,,...,0;.} Then

R={lpl €U :3j<r |[p]l =4j [p] C O;;}

is a cover of 2-X.
Let ¢* = max{iq,io,...,1%r}.

Since 2-X s compact-i*, it follows by the previous Lemma
that /R has a finite subcover, hence U has a finite subcover
as required. u
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K. Keremedis, E. Felouzis, E. Tachtsis (2007) :
BPI < (V X, 2 is Lindeldf) + CAC f;,
(CAC 7y, = Countable choice for non empty finite sets).

We improve the above result here by showing that:

Theorem 3 The following are equivalent in ZF:
() BPI.
(i) For every set X, 2% is Lindelof

(i) For every set X, every basic open cover of 2X has a

countable subcover.

Proof. (i) — (ii) and (ii) — (iii) are straightforward.



(i) — (. It suffices to show that (ii) = CAC ¢,,.

To this end, let
A={A; i€ w}

be a disjoint family of non empty finite sets.

(i) implies that every non countable subset of 2UA has a
limit point.

Indeed, let G be a non countable subset of 2UA Towards
a contradiction, suppose that (G has no limit points, then GG is
a closed set. Consider the following collection of basic open
subsets of 2UA.

U = {[p] € Boua: (|[PING| = 1) v ([p] € 2°N\G)}.

Clearly, U is a cover of QUA, hence by our hypothesis,
has a countable subcover, say V. It can be readily verified
that |G| < |W]|. where

W=A{lpleV:lplNG|=1}

Thus, (G is a countable set. This is a contradiction.
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Foreach 1 € w, let

Bi={fe29: (vji<i [fX(1)nAaj=1)

AV >, AjC FH0)))
Clearly, | B;| < Ng forall ¢ € w. Put
B =U{B; i€ w}.

We consider the following two cases.

(1) |B| = Y. Then fixing an enumeration for B and
picking the least element from each B; with respect to
the prescribed enumeration of B, we may easily define

a choice function of A.

(2 |B| # Xg. Then B has a limit point, say g. We assert
that g7 1(1) N A;| = 1 forall i € w. Assuming the
contrary, it follows that [¢g~1(1) N Ajq| 7 1 for some

10 € w. There are two cases:
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M Aj, C g~1(0). Then

OQ — [{($,O) NS A’Lo}]

is a neighborhood of g meeting at most

U{B;j : j < ig} which is a finite set. This is a con-
tradiction since g is a limit point of B, hence every
neighborhood of g must meet B in an infinite set (QUA

is a Hausdorff space).

G l¢g~1(1) N Aol = 2. Let z,y € A;y be such that
g(x) = g(y) = 1. Consider the neighborhood
Og — [{(QZ‘, 1)7 (y7 1)}]

of g. By the definition of B, it readlily follows that Og M
B = &, and we have reached again a contradiction.

From cases (i) and (i) we infer that forall i € w, ¢~ 1(1) N

A;| = 1 as asserted. Then, C' = ¢~ 1(1) is a choice set of
A. n
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Theorem 4 In ZF, CAC + UF(w) = (VX) TPCRX), where
CAC = Countable axiom of choice,

UF(w) = there exists a free ultfrafilter on w,

PCRX)=2% s countably compact.

Proof. Let X be any infinite set. Fix a nested family
G = {G; : i € w} of closed subsets of 2*. Towards
a contradiction, assume that (|G = &. By CAC, let C' =
{fn i n € w} be achoice set of {Gp\G 41 : N € w}.
Let, by UF(w), F be a free ultrafiter on C'. Put

H={Y c2X:YnCeF.

Then H is an ultrafilter on 2X , and since, in ZF, every
ultrafilter on 2X converges, it follows that . converges to
a point g € 24X Since F is free, it follows that for every
open neighborhood O4 of g, Og M C'is an infinite set. Thus,
g € (G. This is a contradiction, finishing the proof of the

theorem. ]



Theorem 5 In every permutation model of ZFA,

CAC implies 2X s countably compact for every infinite set
X.

Proof. In every permutation model, R is well orderable (being
a pure set), hence UF(w) holds. n

Theorem 6 It is not provable in ZF that for every infinite set X
and for every n € N, T1PC(2%) implies 2°¢ is compact-n.
In particular, it is not provable in ZF that for every infinite set
X, 1PC(24%) implies TP(2%).

Proof. We exhibit a permutation model of CAC + UF(w) + —
BPI. Similarly to Cohen’s second model, the forcing analogue
of the permutfation model can be constructed having the
desired properties.

The set of atoms A has size N1 and A is a disjoint union of
N1 pairs A; = {a;,b;}.1 € Nq.

Let G be the group of permutations of A which fix each A;.
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Let F' be the (normal) filter generated by the subgroups

fix(EF) ={w € G:Ve € E, n(e) = e},

where E is a countable subset of A. Thus, the normal ideal
of supports is the set of all countable subsets of A.
Let N be the permutation model determined by G and F'.

Then the following hold:

(M. The family B = {A; : ¢ € X1} has no choice function
in . Therefore, BPI is false in \. In particular, 24 is not
compact-2in \V.

(2). Due to the countable supports and the regularity of
N4, every function on w with values in N belongs to N\,
hence DC (= principle of dependent choices), and thus
CAC, holds in V.
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Since UF(w) holds in N/, it follows, by CAC + UF(w) in N\,
that TPC(QX ) holds in A/ for every set X. Hence, the

independence result, u

Remark 2 Itis known (Howard, Keremedis, Rubin, Stan-
ley, 2000) that, in ZF, the Tychonoff product of count-
ably many compact spaces is countably compact iff it
is compact. By Theorem 6, this ceases to be true in ZF
if we consider Tychonoff products of non-countable

families of compact spaces.
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Theorem 7 For every infegern > 1, 2R s
compact-n"implies “‘every family A of < n-element subsets
of P(R) such that |J A is disjoint, has a choice set"

In particular, the statement *‘for every infeger
n>1,2Rj compact-n"is not provable in ZF.

Proof. The proof is by induction on n.
For n = 2, assume that 2R is compact-2.

Let A = {T; : i € I} be a family of 2-element subsets of
P(R) such that UA is disjoint.

By way of contradiction assume that A has no choice set.

Consider the following collection of 2-basic clopen subsets
of 2K,
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U={[pl€Bi:(Fac2) A (Fiecl, VX €T,

pa) N X|=1)}.

We assert that U is a cover of 2K,

Indeed, let f € 2R If f ¢ UL, then

forevery 1 € I, f separates the elements of T}, that is,
3X € T} such that f|x = 0 and fl(UTZ-)\X = 1.

It follows that f~1(0) (or f~1(1)) is a choice set of the
family A, contradicting our assumption that A admits no
choice sets.

Therefore, f € UU and U is a cover of the Tychonoff
product R,

On the other hand, I/ has no finite subcover, contradicting
the fact that 2R is compact-2. Hence, A has a choice set
as required.



Assume that for all m < n, if 2R s compact-m, then every
family A of < m-element subsets of P (IR) such that |J A is
disjoint, has a choice set.

We show the result under the premise that 2R s compact-n,
where n > 2. By Lemma 1 we have

(%) 2R s compact-m forall m < n.

Fix a family A = {T; : i € I} of < n-element subsets of
P (R) such that | J A is disjoint.

In view of (x), the induction hypothesis, and the fact that
P(n) is finite, we may assume, without loss of generality,
that |T;| = nforall i € I.

By way of contradiction suppose that A does not have any
choice sets.

Consider the following collection of n-basic clopen subsets
of 2R,
11-2



pa) N X|=1)}.

We assert that U is a cover of 2R, To see this, let f e R ¢
f ¢ UU., then

Viel, 3X,Y € T;suchthat flx =0, fly = 1.
Forevery i € I,let S; = f~1(0) N T}. Then S; is a non
empty proper subset of T; and since A has no choice set,

|S;| > 1foralli € I.

On the other hand, since for all © € I, the set I; has n
elements, it follows that

dm < nsuch that |.S;| < mforalli € 1.
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Let m be the least such m. Since mg < n, Pl compact-

mq. hence by (IH) we have that
B=4{S;:i€l},

hence A, has a choice set. This contradicts our assumption
on A. Thus, U is a cover of 2R,

On the other hand, I/ has no finite subcover, contradicting
the fact that 2R is compact-n. Thus, A does have a choice
set. The induction terminates as well as the proof of the first

assertion of the theorem.

For the second assertion of the theorem, we invoke Fefer-
man’s forcing model. In this model, the family

A= {[X], [\\X]} 1 X Cwi,
where

[X] ={Y Cw: | XAY| < Xg}
has no choice function.
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Thus, the statement 2R is compact-2" is not valid in Fefer-
man’s model, and even more (by Lemma 1) 2R f4ils to be
compact-n for every integer

n > 1. This completes the proof of the theorem. u

Theorem 8 It is not provable in ZF that CAC implies *‘for all
integersn > 1, 2R js compactn”.

Proof. In Feferman’s model, AC for well orderable families
of non empty sets, hence CAC, holds whereas by the proof
of the second assertion of the previous Theorem, 2R £4ils to
be compact-2 in the model. |

11-5



References

(1) S. Feferman, Some applications of the notions of forcing
and generic sets, Fund. Math. 56 (1965), 325-345.

(2) P. Howard, K. Keremedis, J. E. Rubin, and A. Stanley,
Compactness in Countable Tychonoff Products and Choice,
Math. Logic Quart. 46 (2000), 3-16.

(3) P. Howard and J. E. Rubin, Consequences of the Axiom
of Choice, Math. Surveys and Monographs, 59, Amer. Math.
Soc., Providence, RI, 1998.

(4) T. J. Jech, The Axiom of Choice, Dover Publications, Inc.,
Mineola, New York, 2008.

(5) K. Keremedis, The compactness of 2R and some weak
forms of the axiom of choice, Math. Logic Quart. 46 No 4
(2000), 569-571.

12



(6) K. Keremedis, Tychonoff Products of Two-Element Sets
and Some Weakenings of the Boolean Prime Ideal Theorem,
Bull. Polish Acad. Sci. Math. 583 (2005), 349-359.

(7) K. Keremedis, E. Felouzis, and E. Tachtsis, On the com-
pactness and countable compactness of 2R jn ZF, Bull. Polish
Acad. Sci. Math. 85 (2007), 293-302.

(8) J. Mycielski, Two remarks on Tychonoff’s Product Theorem,
Bull. Acad. Polon. Sci., Vol. XIl No 8 (1964), 439-441.

(9) D. Pincus, Adding dependent choice, Ann. Math. Logic
11 (1977), 105-145.

(10) E. Tachtsis, On the Set-Theoretic Strength of Countable
Compactness of R, preprint.

(11) J. Truss, Cancellation laws for surjective cardinals, Ann.
Pure Appl. Logic 27 (1984), 165-207.

13



