Different versions of a first countable space without choice

Kyriakos Keremedis, Eleftherios Tachtsis

University of the Aegean Department of Mathematics Department of Statistics and Actuarial-Financial Mathematics

Notation and terminology

- (1) The Axiom of Choice (**AC**): For every family \mathcal{A} of nonempty sets there exists a function $f : \mathcal{A} \to \bigcup \mathcal{A}$ such that $f(x) \in x$ for every $x \in \mathcal{A}$.
- (2) **ZFC**: Zermelo-Fraenkel set theory plus **AC**.
- (3) **ZF**: Zermelo-Fraenkel set theory minus **AC**.
- (4) **ZF**⁰: Zermelo-Fraenkel set theory minus the Axiom of Regularity.

(5) Let (X, T) be a topological space. X satisfies:

- (A) if $(\forall x \in X)(\exists \mathcal{B}(x))|\mathcal{B}(x)| \leq \aleph_0$ and $\mathcal{B}(x)$ is a local base at x,
- (B) if $(\exists (\mathcal{B}(x))_{x \in X}) (\forall x \in X) |\mathcal{B}(x)| \leq \aleph_0$ and $\mathcal{B}(x)$ is a local base at x,
- (C) if $(\exists (\mathcal{B}(n, x))_{n \in \mathbb{N}, x \in X}) (\forall x \in X) \{ \mathcal{B}(n, x) : n \in \mathbb{N} \}$ is a local base at x.

Introduction

In **ZF** a topological space (X, T) is called **first countable** if and only if X satisfies **(A)**. Furthermore, in **ZFC** the aforementioned three formulations of first countability are equivalent to each other, that is

$$(\mathsf{ZFC}):\quad (\mathsf{A})\Leftrightarrow (\mathsf{B})\Leftrightarrow (\mathsf{C}).$$

On the other hand, in **ZF** the following implications hold:

$$(\mathsf{ZF}):\quad (\mathsf{C})\Rightarrow (\mathsf{B})\Rightarrow (\mathsf{A}).$$

3

G. Gutierres in his paper:

What is a first countable space?, Topology and its Applications, **153** (2006), 3420-3429,

established that **(B)** \Leftrightarrow **(C)** is not provable in **ZF** and posed the following question:

Is the implication (A) \Rightarrow (B) provable in ZF?

- In the present paper we show that the answer to the latter open question is in the negative in the framework of ZF by constructing a suitable model for ZF in which there exists a topological space which satisfies (A) and ¬(B).
- We also introduce two weak choice principles which are deducible from (A) ⇒ (B) and (B) ⇒ (C), respectively, and study the interrelation between (A) ⇒ (B) and (B) ⇒ (C).

Main results

Definition 1 1. A linearly ordered set (L, \leq) is called **conditionally complete** if every non-empty subset of *L* with an upper bound has a least upper bound.

2. A linearly ordered set (L, \leq) is called **separable** if L with the order topology is separable.

Theorem 1 ((A) \Rightarrow (B)) implies the choice principle: For every family $\mathcal{A} = \{(A_i, \leq_i) : i \in I\}$ of separable conditionally complete linearly ordered sets without endpoints, there exists a function f such that for each $i \in I$, f(i) is a non-empty countable subset of A_i .

Proof. Fix a family \mathcal{A} as in the statement of the theorem. Without loss of generality assume that \mathcal{A} is pairwise disjoint. Let $\{\infty_i : i \in I\}$ be a set of distinct elements which is disjoint from $\bigcup \mathcal{A}$. For every $i \in I$, let $X_i = A_i \cup \{\infty_i\}$. We extend the order of A_i to X_i by declaring that ∞_i is less than every member of A_i . For each $i \in I$, consider the collection

$$T_i = \{ [\infty_i, a) : a \in A_i \} \cup \{ \emptyset, X_i \}.$$

 T_i is a topology on X_i . It suffices to show that if $M \subset A_i$, then $U_M = \bigcup \{ [\infty_i, a) : a \in M \} \in T_i$, since the other two requirements for T_i to be a topology are straightforward. There are two cases:

(1) M is not bounded from above. Then $U_M = X_i \in T_i$.

(2) M is bounded from above. Let $m = \sup(M)$ be the least upper bound of M. Then $U_M = [\infty_i, m) \in T_i$.

Let (X, T) be the disjoint topological union of the family $\{(X_i, T_i) : i \in I\}$. Since $A_i, i \in I$, is separable, it follows that X satisfies statement **(A)**. By our hypothesis, X satisfies **(B)**, hence for each $i \in I$, let $\mathcal{C}(\infty_i)$ be a countable local base at ∞_i . For each $i \in I$, let $F_i = \{a \in A_i : [\infty_i, a) \in \mathcal{C}(\infty_i)\}$. Clearly, F_i is a countable subset of A_i for each $i \in I$. This completes the proof of the theorem.

Theorem 2 There is a model of ZF^0 in which there exists a topological space which satisfies (A) and \neg (B).

Proof. The set of atoms is the set $A = \bigcup \{A_n : n \in \omega\}$, $A_n = \{a_{n,x} : x \in \mathbb{R}\}$. The group G of permutations of A is the set of all permutations on A which are a translation on A_n , i.e., if $\pi \in G$, then $\pi | A_n(a_{n,x}) = a_{n,y+x}$ for some $y \in \mathbb{R}$. The normal ideal I of supports is the set of all finite subsets of A. Let (\mathcal{N}, \in) be the resulting permutation model which is determined by G and I.

The following hold:

(1) For each $n \in \omega$, A_n has a definable linear order in \mathcal{N} which is isomorphic to the standard order of \mathbb{R} .

(2) The family $\mathcal{A} = \{A_n : n \in \omega\}$ does not admit in \mathcal{N} a function f such that f(n) is a countable subset of A_n for all $n \in \omega$.

Therefore, by Theorem 1, the implication (A) \Rightarrow (B) fails in \mathcal{N} .

- **Definition 2** 1. The ordering principle (**OP**): Every set can be linearly ordered.
 - 2. AC(\aleph_0): AC restricted to families of non-empty countable sets.

Theorem 3 ((B) \Rightarrow (C)) implies the choice principle: Every family $\mathcal{A} = \{(A_i, \leq_i) : i \in I\}$ of countable linearly ordered sets has a choice function. In particular, (OP) + ((B) \Rightarrow (C)) implies AC(\aleph_0).

Proof. Let \mathcal{A} be a family as in the statement of the theorem. Let $\{\infty_i : i \in I\}$ be a set of distinct elements which is disjoint from $\bigcup \mathcal{A}$. For each $i \in I$, let $X_i = A_i \cup \{\infty_i\}$ be the Alexandroff one-point compactification of the discrete space A_i . Let X be the disjoint topological union of the X_i 's. It can be readily verified that X satisfies (B). Hence, by our hypothesis, X satisfies (C). Let for each $i \in I$, $\{\mathcal{B}(k, \infty_i) : k \in \mathbb{N}\}$ be a local base at ∞_i . Without loss of generality assume that for each $i \in I$, $\mathcal{B}(1, \infty_i) \neq X_i$. Then $f = \{(i, \leq_i - \min(X_i \setminus \mathcal{B}(1, \infty_i))) : i \in I\}$ is a choice function for the family \mathcal{A} . This completes the proof of the theorem. (A) \Rightarrow (B) and (B) \Rightarrow (C) are not weak axioms since the principle of dependent choices (DC), i.e., the statement:

Given a non-empty set X and a relation R on Xsuch that $(\forall x \in X)(\exists y \in X)(xRy)$, there is a sequence $(x_n)_{n \in \omega}$ of elements of X such that x_nRx_{n+1} for all $n \in \omega$.

does not imply any of the above two principles in ZF. Moreover, none of (A) \Rightarrow (B) and (B) \Rightarrow (C) implies DC in ZF⁰. **Theorem 4 DC** does not imply any of the following in ZF^0 : (i) (A) \Rightarrow (B). (ii) (B) \Rightarrow (C).

Proof. (i) The set of atoms is the set $A = \bigcup \{A_n : n \in \aleph_1\}$, $A_n = \{a_{n,x} : x \in \mathbb{R}\}$. The group G of permutations of A is the set of all permutations on A which are a translation on A_n . The normal ideal I of supports is the set of all subsets E of A with $|E| \leq \aleph_0$. Let (\mathcal{N}, \in) be the permutation model which is determined by G and I. The following hold:

(1) Each A_n has a definable linear order in \mathcal{N} which is isomorphic to the standard order of \mathbb{R} .

(2) The family $\{A_n : n \in \omega\}$ admits no function $f \in \mathcal{N}$ such that for each $n \in \omega$, f(n) is a non-empty countable subset of A_n .

(3) The model ${\cal N}$ satisfies DC.

Furthermore, by (1), (2), and Theorem 1, we conclude that (A) \Rightarrow (B) fails in the model \mathcal{N} . Hence, the result.

(ii) The set of atoms is the set $A = \bigcup \{A_n : n \in \aleph_1\}$, $A_n = \{a_{n,x} : x \in \mathbb{Q}\}$. The group G of permutations of A is the set of all permutations on A which are a **rational** translation on A_n . The normal ideal I of supports is the set of all subsets E of A with $|E| \leq \aleph_0$. Let (\mathcal{N}, \in) be the permutation model which is determined by G and I. The following hold:

(1) Each A_n is countable in \mathcal{N} and has a definable linear order in \mathcal{N} which is isomorphic to the standard order of \mathbb{Q} . (2) The family $\{A_n : n \in \omega\}$ has no choice function in \mathcal{N} . (3) DC holds in \mathcal{N} .

Moreover, by (1), (2), and Theorem 3 we infer that (B) \Rightarrow (C) fails in \mathcal{N} . Hence, the result.

The interrelation between (A) \Rightarrow (B) and (B) \Rightarrow (C)

- **Definition 3** 1. The Axiom of Multiple Choice (**MC**): For every family \mathcal{A} of non-empty sets there exists a function f such that for all $x \in \mathcal{A}$, f(x) is a non-empty finite subset of x.
 - 2. MC(2^{\aleph_0}): MC restricted to families of continuum sized sets.
 - 3. ω -MC: For every family \mathcal{A} of non-empty sets there exists a function f such that for all $x \in \mathcal{A}$, f(x) is a non-empty countable subset of x.

Theorem 5 (Gutierres) (i) ω -MC implies ((A) \Rightarrow (B)). (ii) MC(2^{\aleph 0}) implies ((B) \Rightarrow (C)). **Theorem 6** There is a model of ZF^0 which satisfies ((A) \Rightarrow (B)) and \neg ((B) \Rightarrow (C)).

Proof. For the proof of our independence result, we use the permutation model $\mathcal{N}53$ from the book:

P. Howard and J. E. Rubin, *Consequences of the Axiom of Choice*, A.M.S. Math. Surveys and Monographs, **59**, 1998.

The set of atoms is the set $A = \bigcup \{A_n : n \in \omega\}$, $A_n = \{a_{n,q} : q \in \mathbb{Q}\}$. The group G of permutations of A is the set of all permutations on A which are a rational translation on A_n . The normal ideal I of supports is the set of all finite subsets of A. $\mathcal{N}53$ is the resulting permutation model which is determined by G and I. The following hold:

(1) Each A_n is countable in \mathcal{N} and has a definable linear order in \mathcal{N} which is isomorphic to the standard order of \mathbb{Q} . (2) ω -MC holds in the model.

(3) The family $\{A_n : n \in \omega\}$ has no choice function in \mathcal{N} .

By (2) and Theorem 5 we infer that (A) \Rightarrow (B) holds true in the model.

On the other hand, by (1), (3), and Theorem 3, we have that (B) \Rightarrow (C) fails in the model. Hence, the independence result.

Corollary 1 ω -MC does not imply ((B) \Rightarrow (C)) in ZF⁰.

Question. Does ((B) \Rightarrow (C)) imply ((A) \Rightarrow (B)) in ZF⁰?