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Abstract

This paper provides a novel approach to constructing bivariate prior
distributions. The idea is based on the notion of partial exchangeabil-
ity. In particular, in a simple extension of the exchangeable sequence,
we create two dependent exchangeable sequences via a branching mech-
anism. This implies the existence of a bivariate prior distribution.

Keywords: Bivariate prior distribution; Exchangeability; Partial exchange-
ability.

1. Introduction. This paper is concerned with the construction of bi-
variate prior distributions. In the univariate case, for which there is a vast
catalogue of distributions, it is possible to appeal to de Finetti’s Represen-
tation Theorem for an exchangeable sequence.

Our approach for the bivariate setting requires an extension to the ex-
changeable sequence. We achieve this via a branching exchangeable se-
quence. The idea being that an exchangeable sequence branches into two
conditionally independent exchangeable sequences at a particular point.
Hence, there are two exchangeable sequences which are dependent due to
the coincident initial parts they share in common. The amount they share
in common obviously contributes to the extent of the dependence. We be-
lieve this to be the most natural and simple extension to an exchangeable
sequence and hence appropriate for a bivariate prior construction.

Walker and Muliere (2003) introduced a bivariate Dirichlet process based
on this idea. However, in this case, the marginal distributions are both
Dirichlet processes with the same parameter. The aim in this paper is to
develop the idea and to describe how it is feasible to have different marginal
distributions in a parametric setting.

To set the scene, consider a parametric family of distributions F (·|θ),
with θ ∈ Θ. If Z1, Z2, . . . are exchangeable and conditional on θ are inde-
pendent and identically distributed from F (·|θ), then it is well known that
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there exists a prior distribution on Θ, say π(θ), such that for all n,

P(Z1 ≤ z1, . . . , Zn ≤ zn) =
∫

Θ

n∏

i=1

F (zi|θ) π(θ) dθ.

We now discuss our idea for the bivariate prior distribution.
If we have two independent exchangeable sequences Z

(1)
1 , Z

(1)
2 , . . . and

Z
(2)
1 , Z

(2)
2 , . . ., which have the same distribution, then we have clearly cre-

ated a bivariate distribution on Θ×Θ but with no dependence between the
two marginals. To create a dependence in the bivariate distribution we will
create a dependence between the two exchangeable sequences, as must be
done. The simplest way we can see how to do this, with ease of interpreta-
tion, is to force a length, say r, of each sequence to coincide. Obviously, the
larger r is, the greater the dependence between the two sequences, which
will manifest itself in a dependence in the bivariate distribution on Θ× Θ.
Clearly also, r = 0 corresponds to the independent case.

So, consider the first r variables of an exchangeable sequence

Z1, . . . , Zr, Zr+1, . . . .

At the integer r a branching occurs to give two dependent exchangeable
sequences

Z(1) = {Z(1)
1 , . . . , Z(1)

r , Z
(1)
r+1, Z

(1)
r+2, . . .}

and
Z(2) = {Z(2)

1 , . . . , Z(2)
r , Z

(2)
r+1, Z

(2)
r+2, . . .},

with Zi = Z
(1)
i = Z

(2)
i , for i = 1, . . . , r, where the parts

Z
(1)
r+1, Z

(1)
r+2, . . .

and
Z

(2)
r+1, Z

(2)
r+2, . . .

are conditionally independent given Z1, . . . , Zr. The first sequence Z(1) is
independent and identically distributed from F (·|θ1), given θ1, and Z(2) is
independent and identically distributed from F (·|θ2), given θ2. If we now
let Xi = Z

(1)
i+r for i ≥ 1 and Yj = Z

(2)
j+r for j ≥ 1, then

P(Xi ≤ xi, i = 1, . . . , n; Yj ≤ yj , j = 1, . . . , m|Z1 = z1, . . . , Zr = zr)

=
∫
Θ2

∏n
i=1 F (xi|θ1)

∏m
j=1 F (yj |θ2) π(θ1|z) π(θ2|z) dθ1dθ2.
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Hence, the bivariate prior distribution, for the conditionally dependent se-
quences X1, X2 . . . ; Y1, Y2 . . ., which will become the observables, is given
by

π(θ1, θ2) =
∫

π(θ1|z) π(θ2|z) m(z) dz,

where z = {z1, . . . , zr},

π(θl|z) =

{
r∏

i=1

f(zi|θl)

}
π(θl)/m(z),

for l = 1, 2, and

m(z) =
∫ r∏

i=1

f(zi|θ)π(θ) dθ.

There are many bivariate prior distributions which can be formed through
a representation of the above type. However, we are providing motivation
for a particular mixture representation for π(θ1, θ2). The particular mix-
ture involved is derived from notions of partial exchangeability and the idea
of creating dependence via two exchangeable sequences having a common
branch.

To illustrate, we briefly consider what happens if we ask for a bivariate
normal distribution. So π(θ1) and π(θ2) will be taken to be standard nor-
mal and f(z|θ) being normal with mean θ and known variance σ2. Some
elementary work yields that π(θ1, θ2) are bivariate standard normal with
correlation

r

σ2 + r
.

Hence the role of r is quite explicit. This example also points out a par-
ticular issue. It would seem the correlation can only take discrete values,
the smallest being 0 and the next smallest being 1/(1 + σ2). This is true if
one restricts r to be an integer; however, having obtained the form of the
bivariate distribution one can readily see that r can be extended to the non-
negative real line. This extension will typically be the case so ultimately
there will be no discrete dependence structures.

As we have so far described things, the prior distribution of θ1 would
be the same as for θ2, that is π(θ). This paper is about allowing for a
more general bivariate prior in which the marginal distribution of θ1 is not
necessarily the same as for θ2.

Describing the layout of the paper, in Section 2 we detail the construction
behind the bivariate prior distributions for which marginal prior distribu-
tions are different. Section 3 describes a bivariate beta distribution and
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Section 4 a bivariate exponential distribution. In Section 5 we present a
means by which to undertake posterior analysis via sampling based meth-
ods. Section 6 contains a simple illustrative example involving a simulated
data set and the estimation of a ROC curve. Finally, Section 7 contains a
brief discussion.

2. Bivariate prior distributions. As we saw in the previous section, if
the marginal prior distributions are to be the same then we take Z

(1)
i = Z

(2)
i

for i = 1, . . . , r. For a different marginal prior we will use a deterministic
relation between them. We would like marginally for Z

(1)
i to be distributed

as
F1(·) =

∫
F (·|θ) π(θ|λ1) dθ

and for Z
(2)
i to be distributed as

F2(·) =
∫

F (·|θ)π(θ|λ2) dθ,

where (λ1, λ2) are fixed hyper-parameters for the two marginal prior dis-
tributions. We can achieve this without difficulty. There are two cases to
consider, the continuous and discrete cases.

2.1 The continuous case. For this case we start by taking

Z
(1)
1 ∼ F1

and then
Z

(1)
2 |[Z(1)

1 = z] ∼
∫

F (·|θ) π(θ|z, λ1) dθ,

where π(θ|z, λ1) is the conditional distribution of θ given Z
(1)
1 = z. In

general, take

Z
(1)
i |[Z(1)

i−1 = zi−1, . . . , Z
(1)
1 = z1] ∼

∫
F (·|θ) π(θ|z1, . . . , zi−1, λ1) dθ.

To create the dependence we will take, for 1 ≤ i ≤ r,

Z
(2)
i = F−1

2

(
F1(Z

(1)
i )

)
.

This gives us the initial sequences with correct marginal distributions. A
bivariate distribution is constructed due to the connection between the ini-
tial part of the sequences. Then Z

(1)
r+1, . . . and Z

(2)
r+1, . . . are conditionally

independent, given Z
(1)
1 , . . . , Z

(1)
r . Obviously, if F1 ≡ F2, then Z

(1)
i = Z

(2)
i .
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The data will be the two conditionally independent sequences Xi = Z
(1)
r+i

and Yi = Z
(2)
r+i for i = 1, 2, . . .. The role of Z

(1)
i and Z

(2)
i , for i = 1, . . . , r, is as

two (deterministically related) latent processes which make the two data sets
conditionally independent and unconditionally dependent. In fact the two
sequences are then referred to as being partially exchangeable in the sense
of de Finetti which implies the existence of a bivariate prior distribution.

The bivariate distribution can be understood in the following illuminat-
ing way. Take

θ1 ∼ π(·|λ1)

then take
Z

(1)
1 , . . . , Z(1)

r |θ1 ∼ F (·|θ1).

Then transform to obtain Z
(2)
i = F−1

2 (F1(Z
(1)
i )) for i = 1, . . . , r. We now

take as θ2 the random variable which conditionally on Z
(2)
1 , . . . , Z

(2)
r is rep-

resented as
θ2|Z(2)

1 , . . . , Z(2)
r ∼ π(·|Z(2)

1 , . . . , Z(2)
r , λ2),

the conditional distribution of θ given observations Z
(2)
1 , . . . , Z

(2)
r . Now de-

fine,
Z(1) = {Z(1)

1 , . . . , Z(1)
r } and Z(2) = {Z(2)

1 , . . . , Z(2)
r }.

From here we have the joint prior density given by

π(θ1, θ2) =
∫

π(θ1|z(1)) π(θ2|z(2))m1(z(1)) dz(1),

where

m1(z(1)) =
∫ r∏

i=1

f(z(1)
i |θ1) π(θ1|λ1) dθ1.

The marginal distributions can be obtained as:

π(θ1) =
∫

π(θ1|z(1))m1(z(1)) dz(1) = π(θ1|λ1)

and
π(θ2) =

∫
π(θ2|z(2)) m1(z(1)) dz(1)

=
∫

π(θ2|z(2)) m2(z(2)) dz(2)

= π(θ2|λ2).

.
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The nonparametric prior of Walker and Muliere (2003) took F1 = F2 and
hence marginally the prior has the same distribution.

To understand the correlation we will start by assuming that λ = λ1 =
λ2. In this case we have

π(θ2|Z1, . . . , Zr, λ)

with the Zi being independently distributed from F (·|θ1) and θ1 ∼ π(·|λ).
Using the consistency result of Doob (1949), we have that

π(θ2|Z1, . . . , Zr, λ) → δθ1 ,

where δθ denotes a point mass of 1 at θ. So, as r →∞, the joint distribution
for (θ1, θ2) accumulates along the line θ1 = θ2. Obviously, for r = 0, θ1

and θ2 are independent. When λ1 6= λ2, then instead we have the prior
accumulating along the line (θ1, ξ(θ1)), where ξ(θ) is given by

F
(
F−1

2 (F1(·))|ξ(θ)
)

= F (·|θ).
We will return to r later.

2.2 The discrete case. We will now examine the case where the obser-
vations come from two discrete distributions. In this case the inverse of a
distribution F , denoted here by F−(·), is interpreted as:

F−(y) = inf{x : F (x) ≥ y}
where y ∈ (0, 1). This is a more challenging case since the strict monotonic-
ity of the two distributions does not hold.

One may be tempted to define the deterministic relation between the
latent variables as the natural analogue of the continuous one; namely,
Z

(2)
i = F−

2 (F1(Z
(1)
i )) for i = 1, . . . , r. A shortcoming, though, is that Z

(2)
i ,

for i = 1, . . . , r, is not distributed as F2. So, in what follows we present
an elegant and intuitive way of creating the two latent processes in the dis-
crete case. This idea can be used, as before, to generate two exchangeable
sequences of variables with predetermined marginals.

As before, the bivariate distribution can be understood in the following
way. Take

θ1 ∼ π(·|λ1)

and let U = (U1, . . . , Ur) be a random sample of size r with the Ui’s being
independent and identically distributed as Ui ∼ U(0, 1). Take

Z
(1)
i = F−(Ui |θ1), i = 1, . . . , r,
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and then take θ2 as the random variable which conditionally on Z
(2)
1 , . . . , Z

(2)
r

has distribution

θ2|Z(2)
1 , . . . , Z(2)

r ∼ π(·|Z(2)
1 , . . . , Z(2)

r , λ2),

the conditional distribution of θ given observations Z
(2)
1 , . . . , Z

(2)
r , where

Z
(2)
i = F−(Ui |θ), i = 1, . . . , r.

Note that these sequences are correlated through their common“link” which
is the sample values from the uniform distribution. Clearly, unconditionally,
Z

(1)
i ∼ F1 and Z

(2)
i ∼ F2.

The joint distribution of Z(1) is given by

P (Z(1) = z(1)) =
∫ r∏

i=1

f(z(1)
i |θ1) π(θ1|λ1) dθ1.

Similarly, for Z(2). From here we have the joint prior density

π(θ1, θ2) =
∫

[u∈[0,1]r]
π(θ1|z(1)(u))π(θ2|z(2)(u)) du.

The marginal distributions can be easily evaluated,

π(θ1) =
∫
u∈[0,1]r π(θ1|z(1)(u)) du

=
∑
{z(1)} π(θ1|z(1))P (u : Z(1)(u) = z(1))

=
∑
{z(1)} π(θ1|z(1))P (Z(1) = z(1))

= π(θ1|λ1)

Similarly, π(θ2) = π(θ2|λ2). The approach used for the discrete case could
equally have been used in the continuous case as well.

3. A bivariate beta distribution. Here we describe a bivariate beta prior
distribution based on ideas presented in Section 2.1 with r = 2, though we
can do the general r case it is more complicated. Briefly, the method is as
follows: We generate two latent sequences which are dependent through the
sharing of a common part. Each sequence is indexed through a parameter
which is drawn, independently of the other, from a fixed marginal prior dis-
tribution. The bivariate prior distribution is then obtained as the marginal
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of the product between the joint unconditional distribution of the two latent
sequences and the joint “latent” posterior of the parameters.

Let θ1 ∼ Beta(α1, β1) and θ2 ∼ Beta(α2, β2); also for i = 1, 2 let Ui ∼
U(0, 1) be two independent uniform random variables. Consider

Z
(1)
i = F−(Ui |θ1) and Z

(2)
i = F−(Ui |θ2), i = 1, 2,

where F is taken as the distribution of a Bernoulli random variable. It is
convenient to introduce

S1 = Z
(1)
1 + Z

(1)
2 ∼ Bin(2, θ1) and S2 = Z

(2)
1 + Z

(2)
2 ∼ Bin(2, θ2).

The joint distribution of (S1, S2), conditionally on (θ1, θ2), is given by

P (S1 = i , S2 = j | θ1, θ2) = P
(
Z

(1)
1 + Z

(1)
2 = i , Z

(2)
1 + Z

(2)
2 = j | θ1, θ2

)

=
∑

(κ1, κ2)

P (Z(1)
1 = i− κ1 , Z

(2)
1 = j − κ2)P (Z(1)

2 = κ1 , Z
(2)
2 = κ2).

Assuming, without loss of generality, that θ1 ≤ θ2 the distribution can be
summarized as follows;

P (S1 = i , S2 = j | θ1, θ2) = C(2− i, j − i)C(2, i)θi
1(1− θ2)2−j(θ2 − θ1)j−i

for 0 ≤ i ≤ j ≤ 2 and P (S1 = i , S2 = j | θ1, θ2) = 0 for i > j. Here
C(i, j) = i!/(j!(i− j)!).

The next step is to calculate the joint(unconditional on (θ1, θ2)) distrib-
ution of (S1, S2).

Now, for 0 ≤ i ≤ j ≤ 2, P (S1 = i , S2 = j) is given by
∫ 1
0

∫ 1
0 P (S1 = i , S2 = j | θ1, θ2) Beta(θ1|α1, β1) Beta(θ2|α2, β2)dθ1dθ2

= Γ(α1+β1)
Γ(α1) Γ(β1)

Γ(α2+β2)
Γ(α2) Γ(β2)C(2− i, j − i)C(2, i)

× ∫ 1
0

∫ 1
0 θα1+i−1

1 (1− θ1)β1−1θα2−1
2 (1− θ2)β2−j+1(θ − 2− θ1)j−i dθ1dθ2.

Denoting for the moment by D all the terms which do not depend on (θ1, θ2),
the above expression becomes

D
∫ 1
0

∫ 1
0 θi+α1−1

1 (1− θ1)β1−1θα2−1(1− θ2)β2−j+1(θ2 − θ1)j−i dθ1dθ2

= D
∑j−i

m=0(−1)j−i−mC(j − i,m)
{

Γ(α1+j−m) Γ(β1)
Γ(α1+β1+j−m)

} {
Γ(α2+m) Γ(β2−j+2)
Γ(α2+β2+m−j+2)

}
.
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Therefore, the prior π(θ1, θ2) is given by

∑2
i=0

∑2
j=0 π(θ1|i) π(θ2|j) P (S1 = i , S2 = j)

=
∑2

i=0

∑2
j=i Be(θ1|α1 + i, β1 + 2− i) Be(θ2|α2 + j, β2 + 2− j) P (S1 = i , S2 = j)

=
∑2

i=0

∑2
j=i

∑j−i
m=0(−1)j−i−mC(2− i, j − i)C(2, i)C(j − i,m) Γ(α1+β1+2)

Γ(α1+i) Γ(β1+2−i)

× Γ(α2+β2+2)
Γ(α2+j) Γ(β2+2−j)

Γ(α1+β1)
Γ(α1) Γ(β1)

Γ(α2+β2)
Γ(α2) Γ(β2)

Γ(α1+j−m) Γ(β1)
Γ(α1+β1+j−m)

Γ(α2+m) Γ(β2+2−j)
Γ(α2+β2+m−j+2)

×θα1+i−1
1 (1− θ1)β1+1−i θα2+j−1

2 (1− θ2)β2+1−j .

This is our bivariate beta distribution.
Some important points to notice are the following: the dependence be-

tween the parameters in the bivariate prior is actually generated through
the dependence between (S1, S2) since these parameters are conditionally
independent on those variables. The distribution of the (S1, S2) can be
thought of as a bivariate predictive constructed through the latent variable
sequences. The bivariate prior is then created by expressing it as posterior
× predictive and then integrating appropriately.

We will now confirm that the marginal density of θ1 is Beta(α1, β1). The
density can be written as

π(θ1) = Γ(α1+β1)
Γ(α1) Γ(β1)θ

α1−1
1 (1− θ1)β1+1

×∑2
i=0 C(2, i)

(
θ1

1−θ1

)i
A(i) Γ(α1+β1+2)Γ(α2+β2)Γ(β1)

Γ(α1+i) Γ(β1+2−i)Γ(α2) Γ(β2) ,

where A(i) is given by

2∑

j=i

j−i∑

m=0

(−1)j−i−m C(2− i, j − i)C(j − i,m)Γ(α1 + j −m)Γ(α2 + m) Γ(β2 + 2− j)
Γ(α1 + β1 + j −m)Γ(α2 + β2 + m− j + 2)

.

For the result to be true it suffices to show that for i = 0, 1, 2,

A(i) =
(

Γ(α1 + β1 + 2)Γ(α2 + β2)Γ(β1)
Γ(α1 + i) Γ(β1 + 2− i)Γ(α2) Γ(β2)

)−1

.

For the case i = 2 it is trivially true. For i = 1 we have that A(1) is given

9
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by

∑2
j=1

∑j−1
m=0(−1)j−1−m C(1,j−1)C(j−1,m)Γ(α1+j−m)Γ(α2+m) Γ(β2+2−j)

Γ(α1+β1+j−m)Γ(α2+β2+m−j+2)

= Γ(α1+1) Γ(β1+1)Γ(α2) Γ(β2)
Γ(α1+β1+2)Γ(α2+β2)Γ(β1)

{
(β2+α2)(α1+β1+1)

β1(β2+α2) − α1+1
β1

}

= Γ(α1+1) Γ(β1+1)Γ(α2) Γ(β2)
Γ(α1+β1+2)Γ(α2+β2)Γ(β1)

as required. Similarly, A(0) is given by

Γ(α1) Γ(α2) Γ(β2)
Γ(α1+β1+2)Γ(α2+β2) {β1(α1 + β1 + 1) + α1(α1 + 1)− α1(α1 + β1 + 1)}

= Γ(α1) Γ(β1+2)Γ(α2) Γ(β2)
Γ(α1+β1+2)Γ(α2+β2)Γ(β1) .

Therefore,

π(θ1) = Γ(α1+β1)
Γ(α1) Γ(β1)θ

α1−1
1 (1− θ1)β1+1

∑2
i=0 C(2, i)

(
θ1

1−θ1

)i

= Γ(α1+β1)
Γ(α1) Γ(β1)θ

α1−1
1 (1− θ1)β1−1.

In a similar fashion we can show that θ2 ∼ Beta(α2, β2).
The posterior distribution for the θ’s rely on sufficient statistics, when

they exist, of dimension 1, or at least of dimension smaller than r. One such
example is the Bernoulli model with beta prior model, examined earlier. The
question that arises is whether we can use sufficiency to our advantage and
instead of generating an independent and identically distributed sample of
size r from the uniform distribution, as outlined in Section 2.1, and then
separately each Z

(1)
i in Z(1), we can use the sufficiency of S1 and obtain the

same model by first generating a single uniform variable and then sampling
S1 directly from a Bin(r, θ). Here, in expanded form,

S1 =
r∑

i=1

Z
(1)
i .

A similar procedure would be followed for

S2 =
r∑

i=1

Z
(2)
i .

10
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Thus consider the following model: Let θ1 ∼ Beta(α1, β1) and F (·|θ) denote
the distribution function of a Bin(r, θ) random variable. Then generate
U ∼ U(0, 1) and let S1 = F−(U |θ1) so we have that

S1|θ1 ∼ Bin(r, θ1)

with posterior

θ1|[S1 = s1] ∼ Beta(α1 + s1, β1 + r − s1).

Next, we take as θ2 the random variable which conditionally on S2 is repre-
sented as

θ2|[S2 = s2] ∼ π(·|S2 = s2, α2, β2) = Beta(α2 + s2, β2 + r − s2),

the posterior distribution for θ given S2, where S2 = F−(U |θ), with prior
θ ∼ Beta(α2, β2).

As it turns out the sufficiency approach for constructing the model does
not produce the same model as in the previous method. Specifically, in the
binomial-beta case examined previously, the joint conditional distribution
P (S1 = i , S2 = j | θ1, θ2) is not the same for the two approaches. For
instance, we have found that when r = 2 and when 1−

√
1− θ2

2 < θ1 ≤ θ2,
then in the single uniform/binomial generation approach, P (S1 = 0 , S2 =
2 | θ1, θ2) = 0 whereas in the r Bernoulli sequences generation we have
that P (S1 = 1 , S2 = 1 | θ1, θ2) = (θ2 − θ1)2. This obviously has an effect
on the bivariate distribution. Notice that the bivariate beta distribution is
a mixture of independent beta distributions mixed by the distribution of
(S1, S2). This means that in the first approach there are beta components
present in the mixture which are absent in the second approach simply
because P (S1, S2) = 0. The correlation between (θ1, θ2) is also affected.
For instance, when the marginals are Beta(1, 1) and Beta(2, 1), then the
correlation in one case is 0.316 and in the other case is 0.367.

4. A bivariate exponential distribution. Here we study a model based
on the sufficiency idea, a Poisson model with exponential prior. We could
use the more general gamma prior but for simplicity will use the exponential.
So consider the following model:

θ1 ∼ exp(λ1).

Let F (·|θ) denote the distribution function of a Poisson(rθ) random variable.
Generate U ∼ U(0, 1) and let S1 = F−(U |θ1). So we have that

S1|θ1 ∼ Poisson(rθ1)
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with posterior

θ1|[S1 = s1] ∼ Gamma(s1 + 1, r + λ1).

We can obviously in this case consider non-integer values for r. We will
return and comment on this point in the discussion section at the end of the
paper.

Finally, we take as θ2 the random variable which conditionally on S2 is
represented as

θ2|[S2 = s2] ∼ π(·|S2 = s2, λ2) = Gamma(s2 + 1, r + λ2),

the posterior distribution for θ given S2, where S2 = F−(U |θ), with prior
for θ ∼ exp(λ2).

For i = 1, 2, the (unconditional) distribution of Si is given as

p(si) =
λiΓ(si + 1)rsi

(si)!(λi + r)si
=

(
λi

λi + r

)(
r

λi + r

)si

= (1−ρi)ρsi
i , si = 0, 1, 2 . . .

where ρi = r/(λi + r). Therefore, Si ∼ Geom(ρi). This is a Poisson-Gamma
distribution in the case where the mixing distribution is exp(λi).

It is evident that the pair S1 and S2 can equivalently be obtained, di-
rectly, through the following alternative sampling scheme. Generate a point
from a U(0, 1) and subsequently generate two variables S1 and S2 each
following the geometric distribution with respective parameters ρ1 and ρ2.
Now,

corr(θ1, θ2) =
cov(S1, S2)

(Var(S1) + E(S1) + 1)1/2(Var(S2) + E(S2) + 1)1/2
.

To be able to calculate the correlation and the joint density of (θ1, θ2) we
need to compute the joint distribution of (S1, S2).

In what follows we will compute explicitly the joint distribution of (S1, S2)
and then provide explicit expressions for the correlation and the joint density
of (θ1, θ2) in the cases: i) ρ2 = ρ2

1 , ii) ρ2 = ρ1.

Proposition 4.1 Let U ∼ U(0, 1) and consider the random variables S1 =
F−

1 (U) and S2 = F−
2 (U), where F1 and F2 are two geometric distribution

functions with respective parameters ρ1 and ρ2. Assume without loss of

12
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generality that ρ1 ≥ ρ2. Then the joint distribution of (S1, S2) is given as

P (S1 = j , S2 = k) =





ρk
2 − ρ

bkac+1
1 j = bkac

(1− ρ1)ρ
j
1 bkac < j ≤ b(k + 1)ac − 1

ρ
b(k+1)ac
1 − ρk+1

2 j = b(k + 1)ac

0 otherwise,

where a ∈ R, a ≥ 1 such that ρ2 = ρa
1, and for any x ∈ R, bxc is the integer

part of x. The proof is given in the Appendix.

Case 1. (a = 2, i.e. ρ2 = ρ2
1). Before we proceed we remark that in our

calculations, depending on convenience, we will interchange between ρ2 and
ρ2
1. From Proposition 4.1 we have that

P (S1 = j , S2 = k) =





ρk
2(1− ρ1) j = 2k

(1− ρ1)ρk
2ρ1 j = 2k + 1

0 otherwise.

See Figure 1 for a graphical representation of F1 and F2. The correlation
between θ1 and θ2 is given in the following proposition.

Proposition 4.2 Under the model described in Case 1,

corr(θ1, θ2) =
2ρ2(1− ρ1)

1− ρ2
.

The proof is given in the Appendix.

Now, π(θ1, θ2) is given by

∫ 1
0 π(θ1|S1(u))π(θ2|S2(u)) du

=
∑∞

k=0

∑∞
j=0 π(θ1|j) π(θ2|k) P (S1 = j , S2 = k)

=
∑∞

k=0 ρk
2(1− ρ1) Ga(θ2|k + 1, r/ρ2) {Ga(θ1|2k + 1, r/ρ1) + ρ1Ga(θ1|2k + 2, r/ρ1)}.

13



Acc
ep

te
d m

an
usc

rip
t 

The marginal distribution of θ1 is
∑∞

k=0 ρk
2(1− ρ1){Ga(θ1|2k + 1, r/ρ1) + ρ1Ga(θ1|2k + 2, r/ρ1)}

= (1− ρ1) exp{−(rθ1/ρ1)}
∑∞

k=0 ρk
2

{
(r/ρ1)2k+1 θ2k

1
Γ(2k+1) + ρ1(r/ρ1)2k+2 θ2k+1

1
Γ(2k+2)

}

=
(

1−ρ1

ρ1

)
r exp{−(rθ1/ρ1)}

∑∞
k=0

{
r2k θ2k

1
Γ(2k+1) + r2k+1 θ2k+1

1
Γ(2k+2)

}

=
(

1−ρ1

ρ1

)
r exp{−(rθ1/ρ1)}

∑∞
k=0

(rθ1)k

Γ(k+1)

= λ1 exp{−λ1θ1}.

Therefore, θ1 ∼ exp(λ1).
Similarly, it can be shown that θ2 ∼ exp(λ2). Therefore, the joint density

of (θ1, θ2) is a bivariate exponential distribution with

corr(θ1, θ2) =
2ρ2(1− ρ1)

1− ρ2
.

Case 2. (a = 1, i.e. ρ2 = ρ1). This is the case where the marginals of
the bivariate prior distribution are the same. Therefore, we consider the
following model,

θ1 ∼ exp(λ)

with
S|θ1 ∼ Poisson(rθ1)

and
θ2|[S = s] ∼ Gamma(s + 1, r + λ).

Here in expanded form, S =
∑r

i=1 Zi. Note we obtain the same model
whether we sample S from a Poisson(rθ1), or separately each Zi from a
Poisson(θ1). In this case we can compute the correlation directly,

corr(θ1, θ2) = Var{E(θ|S)}
Var(θ)

= Var(S)

Var(S)+E(S+1)

= r
r+λ .

14
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The prior is given by

π(θ1, θ2) =
∑∞

s=0 λ exp(−λθ1)
{

(rθ1)s exp(−rθ1)
s!

}{
(r+λ)s+1θs

2 exp(−(r+λ)θ2

Γ(s+1)

}

= (r + λ) exp {−(r + λ)(θ1 + θ2)}
∑∞

s=0
(r(r+λ)θ1θ2)s

(s!)2
.

If we set ρ = r/(r + λ) then the above becomes

π(θ1, θ2) = λ2

1−ρ exp
{−λ(θ1+θ2)

1−ρ

}∑∞
s=0

(ρλ2θ1θ2)s

(1−ρ)2s(s!)2

= λ2

1−ρ exp
{−λ(θ1+θ2)

1−ρ

}
I0

(
2(ρλ2θ1θ2)1/2

1−ρ

)
,

where

I0(x) =
∞∑

k=0

(x/2)2k/(k!)2

is the modified Bessel function of the first kind, of order zero.
The above distribution is a member of the bivariate exponential distribu-

tion with parameters λ1 = λ2 = λ and ρ = r/(r+λ) which is a special case of
the bivariate gamma distribution. For more on these bivariate distributions,
see Downton (1970) and Iliopoulos (2002). In Figure 2 we plot graphs of the
bivariate exponential prior with λ = λ1 = λ2 = 2.3, ρ = ρ1 = ρ2 and a = 1.
From top left going clockwise we have (ρ = 0.3, r = 1), (ρ = 0.6, r = 4),
(ρ = 0.8, r = 9), and (ρ = 0.95, r = 44). These graphs demonstrate the
convergence to the density with all the mass concentrated on θ1 = θ2.

To sample from the posterior we need the following full conditionals,

1. θ1|S,Xn ∼ Gamma(S +
∑n

i=1 Xi + 1, r + n + λ)

2. θ2|S,Ym ∼ Gamma(S +
∑m

i=1 Yi + 1, r + m + λ)

3.

P(S = s|θ1, θ2) =
{θ1θ2 r(r + λ)}s

I0

{
2
√

θ1θ2 r(r + λ)
}

s!2
.

Distribution 3. is known as the Bessel distribution with parameters ν = 0
and a = 2{θ1θ2r(r + λ)}1/2. For more details on the Bessel distribution see
Yuan and Kalbfleisch (2000). All theses distributions are easy to sample.

5. Posterior analysis. We will refer to the set of latent variables as

Zr = {Z(1)
1 , . . . , Z(1)

r , Z
(2)
1 , . . . , Z(2)

r }.
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Given Zr, a priori θ1 and θ2 are independently distributed. Thus, the pos-
terior updating can be done separately for each θ1 and θ2 conditionally on
Zr. The data are such that given θ1, Xn = (X1, . . . , Xn) are indepen-
dent and identically distributed observations from F (·|θ1), and that given
θ2, Ym = (Y1, . . . , Ym) are independent and identically distributed obser-
vations from F (·|θ2). Therefore, given these facts, it is clear that we can
take advantage of sampling methods, such as the Gibbs sampler and, more
generally, MCMC (Smith and Roberts, 1993; Tierney, 1994).

It is quite obvious then that given Zr, we have the conditional posterior
distribution for θ1 being given, up to proportionality, by

π(θ1|Zr,Xn) ∝
r∏

i=1

f(Z(1)
i |θ1)

n∏

i=1

f(Xi|θ1) π(θ1|λ1)

and the conditional posterior distribution for θ2 being, up to proportionality,
given by

π(θ2|Zr,Ym) ∝
r∏

i=1

f(Z(2)
i |θ2)

m∏

j=1

f(Yj |θ2) π(θ2|λ2).

Thus it is seen that the latent data contribute in a nice way to the likeli-
hood function and if f(·|θ) and π(θ) form a conjugate pair then we have
conditional conjugacy.

Finally, to complete the picture in order to undertake a Gibbs sampler,
we require the full conditional distribution for Z(1). This is given up to
proportionality by

f(Z(1)|θ1, θ2) ∝ f(Z(1)|θ1) f(Z(2)|θ2)
m1(Z(1))

.

It is perhaps always going to be easier to sample the Z
(1)
i ’s individually

rather than together. The conditional density for this is given by

f(Z(1)
i |Z(1)

−i , θ1, θ2) ∝ f(Z(1)
i |θ1) f(Z(2)

i |θ2)

m(Z(1)
i |Z(1)

−i )
.

Typically these distributions will be straightforward to sample.

6. Application in the estimation of the ROC curve. The examina-
tion of summary measures which are used for discriminating between two
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distributions has always been a matter of interest to statisticians. A famil-
iar situation is, for example, when one wants to assess the accuracy of a
diagnostic marker when measurements arise from a healthy and a diseased
population.

A useful statistical tool for the comparison of these two populations
is the Receiver Operating Characteristic (ROC) curve and the associated
area under this curve. To first introduce some necessary notation, let
Xn = (X1, . . . , Xn) and Ym = (Y1, . . . , Ym) be two sequences of obser-
vations which represent random samples from two distributions, say, F1 and
F2. The observations could be measurements from two groups and are pos-
sibly closely related. In our diagnostic marker situation, F1 could represent
the healthy individuals and F2 the diseased ones.

Using terms from our medical example, the ROC curve is a plot of the
true positive rates (the probability that the marker shows high values when
in group {D = diseased}) and the false positive rates (the probability that
the marker shows high values when in group {H = healthy}). In other
words, it is the plot of the sensitivity against the 1-specificity, or

(1− F1(c), 1− F2(c)), −∞ ≤ c ≤ ∞.

When F1 is absolutely continuous there is a closed form expression for the
ROC curve, given as the plot of

ROC(t) = 1− F2

{
F−1

1 (1− t)
}

, 0 ≤ t ≤ 1.

On the other hand, when F1 is discrete, the ROC curve is a set of points
which, by convention, are joined by straight line segments.

If one, or both, of the F1 and F2 are unknown we could estimate them
by their empirical distribution functions and then plot the empirical ROC
curve; that is, the graph of

(1− F1n(ci), 1− F2n(ci))

for a choice of k cut-off values {c1, . . . , ck}. See, for example, Hsieh and
Turnbull (1996) and Nakas et al. (2003).

This indicates how close the two distributions are or how well the diag-
nostic marker can distinguish between the two distributions F1 and F2. A
frequently used summary measure of diagnostic accuracy is the area under
the curve(AUC) given by

AUC = P (X < Y ) + (1/2)P (X = Y ).
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The parametric area under the curve (PAUC) is given by

PAUC(θ1, θ2) = P (X < Y |θ1, θ2) + (1/2)P (X = Y |θ1, θ2)

where θ1 and θ2 are points drawn from the posterior distribution of (θ1, θ2).
Here we present and discuss a simulated-data example using the model

outlined in Section 4 and Case 2. We simulated data using θ1 = 1 and
θ2 = 2 and then drew independent samples Xn = (X1, . . . , Xn), where
Xi|θ1 ∼ Poisson(rθ1), i = 1, . . . , n, and Yn = (Y1, . . . , Yn), where Yj |θ2 ∼
Poisson(rθ2), j = 1, . . . , n. We fixed the values of λ to be 1 and so the
relation between ρ and r is given by ρ = r/(r + 1).
The results are summarised in Figure 3 and Figure 4 where various his-
tograms of the PAUC are drawn for various values of n and r.
We present some interesting remarks:

1. In Figure 3, for small ρ ( = 0.3), that is when θ1 and θ2 are almost
uncorrelated the PAUC tends to be centered around its true value which is
0.711 (see Figure 3a). As n increases the PAUC becomes more concentrated
around this value (see Figures 3b and 3c).

2. In Figure 4, for large ρ (= 0.95), that is when θ1 is approximately equal
to θ2, and for relatively small n, the prior influence is considerable and the
PAUC tends to concentrate around 0.5 which is the value of the PAUC when
θ1 = θ2 (see Figure 4a). As n gets larger the sample becomes more dominant
and again we have concentration around 0.711 (see Figure 4b and 4c).

So the role of r is purely determining the correlation between θ1 and θ2,and
as mentioned in Section 1, it is possible to allow r here to take non-integer
values.

7. Discussion. These results are encouraging. We have presented easy
to work with and well motivated bivariate prior distributions by exploiting
the ideas of de Finetti and partial exchangeability. We believe the bivariate
prior distributions have a naturally interpretable dependence relation and
the degree of correlation is understandable via a single parameter which is
easy to understand via thoughts on prior sample sizes. Moreover, the latent
variable approach makes sampling from posterior distributions quite easy
via a Gibbs sampler.

Here we include some further ideas. One is the possibility of introducing
a negatively correlated prior distribution by taking

Z
(1)
j = F−1

1 (Uj)
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with
Z

(2)
j = F−1

2 (1− Uj)

for all j = 1, . . . , r. This is worth exploring, as is the idea of choosing dif-
ferent parametric families F1(·|θ1) and F2(·|θ2). If the families are different
then the prior families could also be different in order to preserve conjugacy.

On the other hand, extending our ideas to a p-variate prior distributions
seems problematical to us. One idea could be to construct a random tree
with p nodes and so each pair of variates have a random common branch.
This would also need to be explored.

Finally, we discuss the correlation associated with our bivariate models.
The discreteness of r implies a discrete range the correlation. We believe
however that the simple interpretation of r, as a sample size for which the
two branches share a common stem, compensates for this to a large degree.

Note also that in the Poisson-exponential case, we could actually extend
the r to the positive reals by considering the sufficient statistic based model.
This of course gives us a full range for the correlation with no gaps. We are
not sure of when this can happen for other models but will be applicable for
the class of convolution-closed exponential family.
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Appendix
Proof of Proposition 4.1 For any given set of parameters ρ1, ρ2 there

exists an a ∈ R, a ≥ 1, such that ρ2 = ρa
1. For any given s2 = 0, 1 . . . let

j(s2) = sup{j : F1(j) ≤ F2(s2)} = sup{j : 1− ρj+1
1 ≤ 1− ρs2+1

2 }

= sup{j : ρj+1
1 ≥ ρ

a(s2+1)
1 } ⇒ j(s2) = b(s2 + 1)ac − 1.

The number j(s2) indicates how “dense” F1 is in F2. Namely, how many
values of F1 can be found between two successive values of F2. For any
j, k = 0, 1 . . .,

P (S1 = j , S2 = k) = P (u : S1(u) = j, S2(u) = k)

=





F1(bkac)− F2(k) j = bkac

P (S1 = j) bkac < j ≤ j(k) = b(k + 1)ac − 1

F2(k)− F1(j(k)) j = j(k) + 1 = b(k + 1)ac

0 otherwise

=





ρk
2 − ρ

bkac+1
1 j = bkac

(1− ρ1)ρ
j
1 bkac < j ≤ b(k + 1)ac − 1

ρ
b(k+1)ac
1 − ρk+1

2 j = b(k + 1)ac

0 otherwise.
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Proof of Proposition 4.2 Now

E(S1S2) =
∞∑

k=0

k{2kρk
2(1−ρ1)+(2k+1)(1−ρ1)ρk

2ρ1} =
∞∑

k=0

k(1−ρ1)ρk
2{2k(1+ρ1)+ρ1}

= 2(1− ρ1)(1 + ρ1)
∞∑

k=0

k2ρk
2 + (1− ρ1)ρ1

∞∑

k=0

kρk
2

=
2(1− ρ1)(1 + ρ1)

(1− ρ2)

{
ρ2(1 + ρ2)
(1− ρ2)2

}
+

(1− ρ1)ρ1ρ2

(1− ρ2)2

and

Cov(S1, S2) =
2ρ2(1 + ρ2)
(1− ρ2)2

+
(1− ρ1)ρ1ρ2

(1− ρ2)2
− ρ1ρ2

(1− ρ1)(1− ρ2)
=

2ρ2

(1− ρ2)2

with
Var(Si) + E(Si) + 1 = 1/(1− ρi)

for i = 1, 2. Therefore,

corr(θ1, θ2) =
2ρ2(1− ρ1)

1− ρ2
.

Notice that corr(θ1, θ2) ≤ 1 since ρ1(2ρ1 − 1) ≤ 1.
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Figure 1: Graphs of F1(s) (----) and F2(s) (—), ρ2 = ρ2
1, ρ1 = 0.70
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(a) (b)

(c) (d)

Figure 2: In all figures λ = 2.3, and, θ1, θ1 in [0, 1]. In figure (a) we have
ρ = 0.30 (r = 1), in figure (b) we have ρ = 0.60 (r = 4), in figure (c) we
have ρ = 0.80 (r = 9), in figure (d) we have ρ = 0.95 (r = 44)
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Figure 3: In all figures λ = 2.3, r = 1 (ρ = 0.3), in figures (a), (b) and (c)
we take m = n = 10, 50, 100 respectively.
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Figure 4: In all figures λ = 2.3, r = 44 (ρ = 0.95), in figures (a), (b) and (c)
we take m = n = 10, 50, 100 respectively.
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