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Abstract. In this work we study the semilinear wave equation of the form

utt = uxx + λ/(1− u)2,

with homogeneous Dirichlet boundary conditions and suitable initial condi-
tions, which, under appropriate circumstances, serves as a model of an ideal-

ized electrostatically actuated MEMS device. First we establish local existence
of the solutions of the problem for any λ > 0. Then we focus on the singular be-

haviour of the solution, which occurs through finite-time quenching, i.e. when

||u(·, t)||∞ → 1 as t → t∗− < ∞, investigating both conditions for quench-
ing and the quenching profile of u. To this end, the non-existence of a regular
similarity solution near a quenching point is first shown and then a formal as-
ymptotic expansion is used to determine the local form of the solution. Finally,
using a finite difference scheme, we solve the problem numerically, illustrating

the preceding results.
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1. Introduction. The main purpose of this work is to study the singular behaviour
of the hyperbolic problem

utt = uxx +
λ

(1− u)2
, 0 < x < 1, t > 0, (1.1a)

u(0, t) = 0, u(1, t) = 0, t > 0, (1.1b)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), 0 < x < 1 , (1.1c)

where λ is a positive parameter. Problem (1.1) can model the deformation of an
elastic membrane inside an idealized electrostatically actuated MEMS.

“MEMS” stands for micro electro-mechanical systems, and refers to precision
devices which combine mechanical processes with electrical circuits. MEMS devices
range in size from millimetres down to microns, and involve precision mechanical
components that can be constructed using semiconductor manufacturing technolo-
gies. The devices are widely applied as sensors and have fluid mechanical, optical,
radio frequency (RF), data storage, and biotechnology applications. In particular,
examples of microdevices of this kind include microphones, temperature sensors,
RF switches, resonators, accelerometers, data-storage devices etc., [7, 37, 41].

The key part of such a MEMS device usually consists of an elastic plate sus-
pended above a rigid ground plate. In the simplest geometry, the elastic plate (or
membrane) is rectangular and held fixed at two ends while the other two edges re-
main free to move. An alternative configuration could entail the plate or membrane
(no longer necessarily rectangular) being held fixed around its entire edge. When a
potential difference Vd is applied between the membrane and the plate, the mem-
brane deflects towards the ground plate. Under the realistic assumption that the
width of the gap, between the membrane and the bottom plate, is small compared
to the device length, then the deformation of the elastic membrane is described by
a dimensionless equation of the form

ε2utt + ut −∆u =
λ fd(x, t)

(1− u)2
, x ∈ Ω ⊂ R2, u = 0, x ∈ ∂Ω, (1.2a)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω, (1.2b)

where u = u(x, t) stands for the (dimensionless) deflection of the membrane,

ε2 =
inertial terms

damping terms
and λ =

V 2
d L

2
cε0

2Tml2c
∝ V 2

d .

Here u0(x) and u1(x) represent the initial deflection and velocity, respectively, of the
elastic membrane. The function fd(x, t) describes the varying dielectric properties
of the membrane; for simplicity we assume here that fd(x, t) ≡ 1. Furthermore, Tm
stands for the tension in the membrane, Lc is the width of the parallel plates, each of
them denoted by Ω, lc is the unperturbed width of the gap between the membrane
and the ground electrode, and ε0 is the permittivity of free space. The boundary
condition represents the membrane being kept in its unperturbed position along its
edge.

When the damping terms dominate, i.e. when ε2 � 1, then (1.2) reduces to the
parabolic problem

ut −∆u =
λ

(1− u)2
, x ∈ Ω ⊂ R2, u = 0, x ∈ ∂Ω,

u(x, 0) = u0(x) < 1, x ∈ Ω,

which has been extensively studied in [7, 10, 13, 21].
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On the other hand, when the contribution of the inertial terms dominates, i.e.
ε2 � 1, we derive, after rescaling, the model

utt −∆u =
λ

(1− u)2
, x ∈ Ω ⊂ R2, u = 0, x ∈ ∂Ω, (1.3a)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω. (1.3b)

In general, the two parallel plates are of arbitrary shape. However, if the parallel
plates are thin and narrow homogeneous strips of fixed width Lc, see [1, 34], then,
with suitable scaling, (1.3) can be reduced to the one-dimensional model (1.1). The
one-dimensional problem can also be used as a simple model to get better insight into
the operation of devices with more general geometries, and especially for the two-
dimensional radially symmetric case, i.e. when Ω is a disk, which will be investigated
in a forthcoming paper. For certain MEMS-type devices, e.g. resonators and some
devices with applications in data storage and optical engineering, [14, 39, 40, 41],
the rectangular geometry is practical and it is in fact used. The investigation of the
one-dimensional model (1.1) is thus of importance in its own right.

When the MEMS device is connected in series with a voltage and a fixed capacitor
one can derive a non-local model of the form

ε2utt + ut −∆u =
λ

(1− u)2
(

1 + γ
∫ 1

0
1

1−udx
)2 , x ∈ Ω ⊂ R2, u = 0, x ∈ ∂Ω,

(1.4a)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω, (1.4b)

where the parameter γ represents the ratio of a fixed capacitance to a reference
capacitance, see [10]. Model (1.4), depending on the contribution of the inertial
and damping terms, gives rise to the non-local parabolic problem

ut −∆u =
λ

(1− u)2
(

1 + γ
∫ 1

0
1

1−udx
)2 , x ∈ Ω ⊂ R2, u = 0, x ∈ ∂Ω,

u(x, 0) = u0(x) < 1, x ∈ Ω,

which has been studied in [16, 17, 19, 35], or to the hyperbolic non-local model

utt −∆u =
λ

(1− u)2
(

1 + γ
∫ 1

0
1

1−udx
)2 , x ∈ Ω ⊂ R2, u = 0, x ∈ ∂Ω,

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x), x ∈ Ω,

whose behaviour for the one-dimensional case was investigated in [22].
Recently some authors initiated the investigation of fourth-order models, using

the bilaplacian operator which models the moving part of a MEMS device as an
elastic plate (with non-zero thickness), rather than as a simple, thin, membrane,
[18, 25]. There are also papers investigating the quenching behaviour for fourth
order parabolic equations, [24, 32]. Some recent works investigate the wave equation
with damping, [9, 30, 31].

For a more detailed account of the modelling of MEMS devices, see the books
[7, 37, 41].

From the above, it is clear that the applied voltage Vd controls the operation
of the MEMS device. Indeed, when Vd takes values above a critical threshold Vcr,
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called the pull-in voltage, this can lead to the phenomenon of touch-down (or pull-
in instability as it is also known in MEMS literature) when the elastic membrane
touches the rigid ground plate, possibly causing destruction of the device in some
applications. (The designers of such MEMS devices consequently need to tune the
voltage load so that stays away from the pull-in voltage.) Equivalently, this means
that there should be some critical value λcr, depending upon the initial data, of the
parameter λ above which singular behaviour should be expected for the solution
of problem (1.1). Looking at the nonlinear term of problem (1.1), one can notice
that singular behaviour is possible only when u takes the value 1, a phenomenon
known in the literature as quenching, see also Section 4. From the point of view of
applications it is important to determine whether quenching occurs and, if it does,
to clarify when, how and where it might happen. We address two of these questions
in this manuscript.

Many authors have investigated the occurrence of quenching for the hyperbolic
problem (1.1), [5, 6, 20, 29, 38]. However, to the best of our knowledge, the be-
haviour close to quenching, i.e. the quenching profile, has not been studied previ-
ously. In the current work, we first prove some quenching results for problem (1.1)
which improve some of the results in [5] for the one-dimensional case and in [29, 38]
for higher dimensions. Although we mainly focus on the one-dimensional case, our
quenching results can be easily extended to higher dimensions as we note in the
text.

The outline of the current work is as follows. In Section 2 the local and global
existence of solutions to problem (1.1) are studied, while the steady problem is
briefly looked at in Section 3. Then, in Section 4, we establish some conditions
under which the solution u of (1.1) quenches in finite time, see Theorems 4.2, 4.3
and 4.4. Section 5 is devoted to the investigation of the question of existence of
a regular self-similar quenching solution and we finally give a negative answer, see
Theorem 5.1. This result is rather surprising since, in standard semilinear wave
equations with nonlinearities leading to blow-up, the local behaviour close to blow-
up is usually of self-similar type, see [2, 3, 11, 33]. The result is also in contrast
to the existence of a self-similar quenching profile for the corresponding parabolic
problem, [10]. In Section 6 we go on to use an asymptotic expansion to obtain the

local form of the quenching profile as const.×(x − quenching point)
4
3 . Finally, in

Section 7, a moving mesh adaptive method is used to obtain a numerical solution
of the problem, corroborating the results regarding the quenching profile. We close
the paper with a short discussion of our results.

2. Local and Global Existence. In this section we establish local existence of
problem (1.1) where u0, u1 ∈ C1 ([0, 1]) and satisfy the compatibility conditions
u0(0) = u0(1) = 0.

Definition 2.1. We say that u is a weak solution of (1.1) in QT ≡ (0, 1)× (0, T ),
for some T > 0, if:

• (i) u is continuous in Q̄T and satisfies the initial and boundary conditions
there,

• (ii) u ≤ 1− δ in Q̄T , for some δ > 0 and for x ∈ (0, 1),
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• (iii) u has weak derivatives, ux, ut ∈ L2(Q̄T ) and for all t ∈ (0, T ), ux, ut ∈
L2 ([0, 1]) ,

• (iv) for any function ζ(x, t) ∈ C2(Q̄T ) satisfying the boundary conditions
(1.1b) and for 0 ≤ t ≤ T , the following equality holds:∫ 1

0

ζ(x, t)ut(x, t)dx =

∫ t

0

∫ 1

0

[ζτ (x, τ)uτ (x, τ)− ζx(x, τ)ux(x, τ)]dxdτ

+ λ

∫ t

0

∫ 1

0

ζ(x, τ)dxdτ

(1− u(x, τ))
2 , (2.1)

where ζ(x, 0) = 0.

By Sobolev’s and Poincaré’s inequalities,

||u||∞ ≤ C ||ux||2, C > 0, (2.2)

where C depends only on the interval (0, 1), and we get that a weak solution of

(1.1) is actually a C1,1
x,t−solution. Under the assumptions u0 ∈ C2((0, 1)) and

u1 ∈ C1([0, 1]) we obtain, via D’Alembert’s formula, that u(x, t) is a regular

C2,2
x,t−solution to (1.1) except (possibly) on the set

{(x, t) ∈ (0, 1)× [0, T ] |x− t or x+ t is an integer},
see also [5].

Moreover, the total energy of any weak solution of (1.1) is preserved, i.e.

ET (t) =
1

2

∫ 1

0

(u2
x + u2

t ) dx+

∫ 1

0

λ

1− u
dx = ET (0) := E0, 0 < t < T. (2.3)

Regarding local existence of problem (1.1) we have:

Theorem 2.2. [5] : For any λ > 0, if the initial data u0(x) and u1(x) ∈ C1([0, 1])
satisfy the condition

||u0||∞ + T ||u1||∞ < 1− 2δ, for some positive δ > 0, (2.4)

with T sufficiently small, then problem (1.1) has a unique weak C1,1
x,t−solution on

QT . Furthermore, the solution can be extended to any interval of the form [0, T +τ ]
for τ sufficiently small and positive as long as |u| < 1 on Q̄T .

We notice that Theorem 2.2 implies that the solution of problem (1.1) ceases to
exist by quenching. For local existence results in the higher dimensions N = 2, 3,
see [29, 38]. For a different existence proof see [30].

For small initial data and for 0 < λ < λ∗R0
≤ λ∗, the following global existence

result is available.

Theorem 2.3. [5, 29] : If the initial data u0(x) and u1(x) satisfy the condition

||u0||2H1
0 ((0,1)) + ||u1||2L2((0,1)) < R0, for some small enough positive R0 > 0,

then there exists λ∗−(R0) ≤ λ∗, where λ∗ is the critical parameter for the steady
problem (3.2), see below, so that for 0 < λ < λ∗−(R0) problem (1.1) has a global-in-
time solution, i.e. there exists a constant K = K(λ,R0) < 1 such that ||u(·, t)||∞ ≤
K for any t ≥ 0.

Remark 1. Athough it is conjectured that supR0
λ∗−(R0) = λ∗ there is still no

proof of this equality.
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Remark 2. By the definition of λcr in the Introduction, if ||u0||2H1
0 ((0,1))

+||u1||2L2((0,1)) <

R0, then λcr ≥ λ∗−(R0).

3. The Steady-State Problem. The steady-state problem of (1.1) is

w′′ +
λ

(1− w)2
= 0 , 0 < x < 1 , w(0) = w(1) = 0 , 0 < w < 1. (3.1)

For the steady problem it is known that there exists a critical value λ∗ such that
problem (3.1) has exactly two solutions (the minimal solution w and the maximal
one w) for any λ < λ∗, moreover, there is a unique solution 0 < w∗ < 1 for λ = λ∗

and no solution for λ > λ∗ (see [12, 27]).
We can actually calculate the critical value λ∗. If we set W = 1 − w then (3.1)

becomes

W ′′ = λ/W 2 , 0 < x < 1 , W (0) = W (1) = 1 . (3.2)

Multiplying both sides of (3.1) by W ′ and integrating from m = min{W (x), x ∈
[0, 1]} = W (1/2) to W (x), we derive∫ W ′

0

W ′dW ′ =

∫ x

1
2

W ′′W ′dx = λ

∫ x

1
2

W ′

W 2
dx = λ

∫ W

m

dW

W 2
.

Hence
1

2
(W ′)

2
= λ

(
1

m
− 1

W

)
.

This gives, equivalently,

dx

dW
=

√
m

2λ

√
W

W −m
,

which implies

x− 1
2 =

√
m

2λ

[√
W (W −m)− 1

2
m ln(m) +m ln

(√
W +

√
W −m

)]
.

The latter yields, on setting x = 1 so that W = 1,

λ = 2m

[√
1−m− 1

2
m ln(m) +m ln

(
1 +
√

1−m
)]2

.

By the above relation we conclude that the maximum of m = m(λ) is attained for
λ = λ∗ ≈ 1.4, see Figure 1.
The computation of the value λ∗, with a different way, is also given in [10].

4. Finite-Time Quenching. By Theorem 2.2 we derive that the solution of (1.1)
ceases to exist only when u reaches the value 1 at some point (x, t) ∈ [0, 1]× (0,∞],
i.e. for finite or infinity quenching time. This phenomenon is usually called quench-
ing or touch-down (or pull-in instability) since it corresponds to the situation where
the elastic membrane touches down on the rigid plate in the MEMS device. Rather
more mathematical discussions of this phenomenon can be found in Sections 5 and 6.

Definition 4.1. The solution u(x, t) of problem (1.1) quenches at some point x∗ ∈
[0, 1] in finite time 0 < t∗ < ∞ if there exists sequences {xn}∞n=1 ∈ (0, 1) and
{tn}∞n=1 ∈ (0,∞) with xn → x∗ and tn → t∗ as n → ∞ such that u(xn, tn) → 1−
as n → ∞. In the case where t∗ = ∞ we say that u(x, t) quenches in infinite time
at x∗.
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Figure 1. Bifurcation diagram for problem (3.1). Here µ is the
parameter of the linearized problem (4.2).

We now present two results regarding the finite-time quenching of solution u(x, t)
of (1.1). The first one proves that finite-time quenching occurs when the parameter
λ is too big for steady-state solutions to exist. This resembles a result valid for the
corresponding parabolic problem, [13, 21]. The occurrence of quenching for λ > λ∗

resembles also the results obtained in [18, 25] for the fourth order wave equation.

Theorem 4.2. If λ > λ∗ the solution u(x, t) of problem (1.1) quenches in finite
time.

Proof. For the proof we use the spectral method developed in [23]. We assume that
for λ > λ∗ problem (1.1) has a solution for 0 < t < Tmax ≤ ∞, i.e.

u(x, t) < 1 almost everywhere in (0, 1) for any 0 < t < Tmax. (4.1)

We first provide some results for the associated linearized eigenvalue problem

φ′′ +
2λ

(1− w)3
φ = µφ, 0 < x < 1, φ(0) = φ(1) = 0. (4.2)

Set µ1 = µ1(λ;w), the principal eigenvalue of problem (4.2), then µ1(λ;w) > 0 and
µ1(λ;w) < 0 for any 0 < λ < λ∗, [12], which indicates the stability of w and the
instability of w, see also Figure 1. Moreover, µ1 → µ∗1 = µ1(λ∗;w∗) = 0 as λ→ λ∗−,
as stated in Theorem 1.3 of [12]. Let φ∗ be the eigenfunction corresponding to the
eigenvalue µ∗1 = 0, taken to be strictly positive, [12], and normalized so that∫ 1

0

φ∗dx = 1, (4.3)

i.e. φ∗ satisfies

φ∗′′ +
2λ∗

(1− w∗)3
φ∗ = 0, 0 < x < 1, φ∗(0) = φ∗(1) = 0. (4.4)
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For λ > λ∗, set u(x, t, ;λ) = w∗(x) + z(x, t;λ), then z satisfies

utt = ztt = w∗′′ + zxx +
λ

(1− u)2
. (4.5)

Now define the functional

A(t) =

∫ 1

0

z(x, t)φ∗(x)dx.

Multiplying both sides of equation (4.5) with the eigenfunction φ∗, integrating over
the interval [0, 1], using Green’s identity and equation (4.4), we then obtain

A′′(t) =

∫ 1

0

w∗′′φ∗dx+

∫ 1

0

zxxφ
∗dx+ λ

∫ 1

0

φ∗

(1− u)2
dx

= −λ∗
∫ 1

0

φ∗

(1− w∗)2
dx+

∫ 1

0

zφ∗′′dx+ λ

∫ 1

0

φ∗

(1− u)2
dx,

= −λ∗
∫ 1

0

φ∗

(1− w∗)2
dx− λ∗

∫ 1

0

2φ∗

(1− w∗)3
zdx+ (λ− λ∗)

∫ 1

0

φ∗

(1− u)2
dx

+λ∗
∫ 1

0

φ∗

(1− u)2
dx

= (λ− λ∗)
∫ 1

0

φ∗

(1− u)2
dx+ λ∗

∫ 1

0

[
1

(1− u)2
− 1

(1− w∗)2
− 2 z

(1− w∗)3

]
φ∗dx, (4.6)

for λ > λ∗.
From conservation of energy, (2.3),

||ux||22 ≤ 2E0 − 2λ

∫ 1

0

1

1− u
dx < 2E0,

and we then derive, on combining Sobolev’s and Poincaré’s inequalities (2.2), that

u(x, t) > −C0 for any x ∈ [0, 1], 0 < t < Tmax, (4.7)

where C0 is a positive constant depending only upon λ and the initial data.
Note that due to (4.7) the first term of the right-hand side of (4.6) is estimated

from below by

(λ− λ∗)
∫ 1

0

φ∗

(1− u)2
dx ≥ (λ− λ∗) inf

t∈(0,Tmax)

∫ 1

0

φ∗

(1− u)2
dx ≥ (λ− λ∗)

(1 + C0)2
,

since also (4.3) holds.
On the other hand, the integrand of the second term of the right-hand side of

(4.6) is non-negative since

1

(1− u)2
− 1

(1− w∗)2
− 2 z

(1− w∗)3
≥ 3 z2

(1− ξ)4
> 0, (4.8)

for some ξ ∈< w∗, u >, where < w∗, u >= {ξ : ξ = θw∗ + (1− θ)u, θ ∈ [0, 1]}.
Thus, we obtain the differential inequality

A′′(t) ≥ (λ− λ∗)
(1 + C0)2

= K > 0, for λ > λ∗,

which integrated twice yields

A(t) ≥ K t2

2
+A1t+A0 = G(t), for any 0 < t < Tmax, (4.9)
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where

A0 =

∫ 1

0

z(x, 0)φ∗(x)dx =

∫ 1

0

(u0(x)− w∗(x))φ∗(x)dx < 1,

and

A1 =

∫ 1

0

zt(x, 0)φ∗(x)dx =

∫ 1

0

u1(x)φ∗(x)dx.

It is readily seen that the positive root of the equation G(t) = 1 is

0 < t+ =
−A1 +

√
A2

1 − 2K(A0 − 1)

K
<∞, (4.10)

thus limt→t1 A(t) = 1− for some t1 ≤ t+ by (4.9). However, the latter, since

A(t) =

∫ 1

0

z(x, t)φ∗(x) dx ≤ ‖u− w∗‖∞ ≤ ‖u‖∞, for w∗ > 0 ,

implies that limt→t∗ ||u(·, t)||∞ = 1 for some t∗ ≤ t+.

Theorem 4.2 improves the result of Theorem 3.2 of [5] where quenching was
proved only for λ > λ∗+, for some λ∗+ > λ∗, and left a gap for the range (λ∗, λ∗+].

Moreover, the result of Theorem 4.2 can be easily extended to the practically
important two-dimensional case and indeed to three dimensions. The proof follows
exactly the same steps. The existence of λ∗ <∞ for the higher-dimensional steady-
state problem

∆w +
λ

(1− w)2
= 0 , x ∈ Ω, w(x) = 0, x ∈ ∂Ω, 0 < w < 1,

for Ω being a bounded domain of RN , N = 2, 3, is guaranteed by the results in
[7, 12], where the C2−regularity of the extremal solution w∗(x) = w(x;λ∗) is also
proved. In [7, 12], it is additionally proved that the principal eigenvalue of the
linearized problem

∆φ∗ +
2λ∗

(1− w∗)3
φ∗ = µ∗φ∗, x ∈ Ω, φ∗(x) = 0, x ∈ ∂Ω,

is µ∗ = 0. Moreover, a lower estimate of the form (4.7) still holds due to Sobolev’s
inequality holding for N = 2, 3. Therefore the quenching result in [38] can also be
improved. In addition, the estimates of the quenching time presented in the next
remark are also applicable for N = 2, 3.

Remark 3. The upper bound of the quenching time obtained in Theorem 4.2 can
be used to estimate the quenching time, from above, in the asymptotic limit of
λ→ λ∗+.

For u1 ≥ 0 and not identically zero, so that A1 > 0, taking λ → λ∗+ so that
K → 0, (4.10) gives t+ → (1−A0)/A1. For λ close to the critical value, any upward
perturbation leads to quenching in an order-one time, or less. With u1 identically
zero, so that A1 = 0, t+ = (2(1−A0)/K)1/2 and thus t∗ ≤ t+ = O((λ−λ∗)−1/2) for
λ → λ∗+. With u1 ≤ 0 and not identically zero, so that A1 < 0, taking λ → λ∗+,
so that K → 0 in (4.10) now gives t+ ∼ −2A1/K. Then t∗ ≤ t+ = O((λ− λ∗)−1).

The middle estimate of the quenching time agrees with one which holds for the
corresponding parabolic problem, see [13, 23].

We cannot easily get a good bound in the same way in the opposite limit of
λ→∞. This is due to C0 being potentially unbounded.
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We should note, however, that in this one-dimensional case we can proceed
slightly differently.

Writing F (x, t) = λ/(1− u(x, t))2 and F̃ (x, t) = F (x, t) for 0 < x < 1, F̃ (x, t) =

−F (−x, t) for −1 < x < 0 and F̃ (x, t) = −F (2−x, t) for 1 < x < 2, the D’Alembert
solution for (1.1), applying for t ≥ 0, gives

u(x, t+ 1) =
1

2
(ũ(x− 1, t) + ũ(x+ 1, t)) +

1

2

∫ x+1

x−1

ũt(y, t) dy

+
1

2

∫ 1

0

∫ x+1−s

x−1+s

F̃ (y, t+ s) dy ds

= −1

2
(u(1− x, t) + u(1− x, t)) +

1

2

∫ 1

0

∫ min{x+1−s,1−x+s}

max{1−s−x,x−1+s}
F (y, t+ s) dy ds

> −u(1− x, t) ,
where ũ is the (odd) extension of u defined by ũ(x, t) = u(x, t) for 0 < x < 1,
ũ(x, t) = −u(−x, t) for −1 < x < 0, and ũ(x, t) = −u(2 − x, t) for 1 < x < 2.
We deduce that if u falls to −1 at some time t1, quenching must then occur before
t1 + 1.

Combining this result with the estimate got from (4.10) (based on assuming that
u remains greater than −1) gives the quenching time estimate t∗ . 1 for λ→∞.

Since u(x, t) represents the deflection of the elastic membrane inside MEMS
device, one expects touch-down to occur when the initial deformation u0(x) of the
elastic membrane is big enough and/or there is movement towards the rigid plate,
meaning that u1(x) is positive. This expectation is verified by the following.

Theorem 4.3. Let 0 < λ ≤ λ∗, then the solution of problem (1.1) quenches in finite
time provided that the initial data u0(x) is greater than or equal to the maximal
steady-state solution w(x;λ) and u1(x) is non-negative, with u0(x) > w(x;λ) or
u1(x) > 0 for some x.

Proof. Again we proceed as in [23]. Let us assume that the maximum existence
time of problem (1.1) is 0 < Tmax ≤ ∞. For any 0 < λ ≤ λ∗ set u(x, t;λ) =
w(x;λ) + z(x, t;λ), (note that w = w∗ for λ = λ∗). Then z satisfies

utt = ztt = w′′ + zxx +
λ

(1− u)2

= λ

[
1

(1− u)2
− 1

(1− w)2
− 2 z

(1− w)3

]
+ zxx +

2λ z

(1− w)2
− µ1 z + µ1 z. (4.11)

Let (µ1, φ1) be the principal eigenpair of the problem:

φ′′ +
2λ

(1− w)3
φ = µφ, 0 < x < 1, φ(0) = φ(1) = 0, (4.12)

where φ1 is considered to be positive and normalized according to (4.3) and µ1 is
known to be non-negative, since w is unstable, see [7, 12].

We now define A(t) by

A(t) =

∫ 1

0

z(x, t)φ1(x) dx. (4.13)
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Differentiating (4.13) twice and using equation (4.11) combined with Green’s
identity, we obtain

A′′(t) =

∫ 1

0

ztt(x, t)φ1(x) dx

=

∫ 1

0

λ

[
1

(1− u)2
− 1

(1− w)2
− 2 z

(1− w)3

]
φ1 dx

+

∫ 1

0

[
φ′′1 +

2λφ1

(1− w)3
− µ1 φ1

]
z dx+ µ1

∫ 1

0

z φ1 dx. (4.14)

Since φ1 satisfies (4.12) with µ = µ1, the second term on the right-hand side of
(4.14) vanishes, hence

A′′(t) ≥ λ
∫ 1

0

3 z2 φ1

(1 + C0)4
dx+ µ1A(t) (4.15)

taking also into account

1

(1− u)2
− 1

(1− w)2
− 2 z

(1− w)3
≥ 3 z2

(1− ξ)4
> 0, for some ξ ∈< u,w >,

as well as the fact that (4.7) is still valid. By virtue of Jensen’s inequality, (4.15)
yields

A′′(t) ≥ ΛA2(t) + µ1A(t), for any 0 < t < Tmax, (4.16)

where Λ = 3λ
(1+C0)4 . Now the differential inequality (4.16) under the initial conditions

A(0) = A0 =

∫ 1

0

z(x, 0)φ1(x) dx =

∫ 1

0

(u0(x)− w(x))φ1(x) dx ≥ 0, (4.17)

and

A′(0) = A1 =

∫ 1

0

zt(x, 0)φ1(x) dx =

∫ 1

0

u1(x)φ1(x) dx ≥ 0, (4.18)

with A(0) > 0 or A′(0) > 0 implies that A(t) > 0 for any 0 < t < Tmax. Therefore
the right-hand side of (4.16) is positive, since µ1 ≥ 0, so

A(t) > A1t+A0, for 0 < t < Tmax .

Substituting back into (4.16), and integrating, gives

A(t) > A1t+A0 + Λ

(
A2

0t+A0A1t
2 +

1

3
A2

1t
3

)
, for 0 < t < Tmax .

This yields that limt→t1−A(t) = 1 for some finite positive t1. Since

A(t) =

∫ 1

0

z(x, t)φ1(x) dx ≤ ‖u− w‖∞ ≤ ‖u‖∞, for w > 0,

we also have that ||u(·, t)||∞ → 1− as t→ t∗ ≤ t1 <∞, which also implies, [6, 22],
that ||utt(·, t)||∞ →∞ as t→ t∗.

Remark 4. Theorem 4.3 can be easily extended to the higher dimensions N = 2, 3
since the linearized problem for 0 < λ ≤ λ∗,

∆φ+
2λ

(1− w)3
φ = µφ, x ∈ Ω, φ(x) = 0, x ∈ ∂Ω,

has non-negative principal eigenvalue as well as a lower estimate of the form (4.7)
still valid.
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We close this section with a quenching result applying for higher dimensions
N > 3, where the estimate (4.7) obtained via Sobolev’s inequality is no longer
valid. For a similar result see also [10, 18].

Theorem 4.4. If λ > λ∗+ = 4ν1/27 ≥ λ∗, where ν1 > 0 is the principal eigenvalue
of the problem

−∆ψ = νψ, x ∈ Ω, ψ = 0, x ∈ ∂Ω, (4.19)

then the solution of problem

utt −∆u =
λ

(1− u)2
, x ∈ Ω ⊂ RN , u = 0, x ∈ ∂Ω, (4.20a)

u(x, 0) = u0(x) < 1, ut(x, 0) = u1(x) , x ∈ Ω, (4.20b)

quenches in finite time.

Proof. We define the functional

F (t) =

∫
Ω

u(x, t)ψ1(x) dx ≤ ||u(·, t)||∞ , (4.21)

where ψ1 > 0 is the eigenfunction of (4.19) normalized so that
∫

Ω
ψ1 dx = 1.

Differentiating F (t) twice and using integration by parts together with equation
(4.20a) and Jensen’s inequality, yield the differential inequality

F ′′(t) =

∫
Ω

(
∆u+

λ

(1− u)2

)
ψ1 dx =

∫
Ω

u∆ψ1 dx+

∫
Ω

λψ1

(1− u)2
dx,

≥ −ν1 F (t) +
λ

(1− F (t))2
, (4.22)

with associated initial conditions

F (0) = F0 < 1 and F ′(0) = F1 . (4.23)

It can be easily seen that for λ > λ∗+ = 4ν1/27,

λ

(1− s)2
− ν1s > 0 , for any 0 ≤ s < 1 ,

which, by virtue of (4.22) and (4.23), guarantees that

F ′′(t) > C2 > 0 for any 0 < t < Tmax ,

thus

F (t) > C2t
2 + F1t+ F0 for any 0 < t < Tmax . (4.24)

But relation (4.24) implies that limt→t2 F (t) = 1 for some t2 ≤ t+ where

0 < t+ =
−F1 +

√
F 2

1 + 4C2(1− F0)

2C2
<∞ . (4.25)

Finally, (4.21) implies that ||u(·, t)||∞ → 1 as t→ t∗ ≤ t+.
The statement that λ∗+ ≥ λ∗ is clear by contradiction (on assuming that λ∗ > λ∗+

and then taking λ∗ > λ > λ∗+ with initial conditions u0 = w (or w) and u1 = 0 ).

Remark 5. An estimate on the quenching time for large λ can easily be got from
(4.25) (c.f. Remark 3).
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Remark 6. For convenience the proofs of all the quenching results given in the cur-
rent section concern smooth solutions. However, the same results can be proved for
the weak solutions defined by Definition 2.1 under the assumption that u0(x), u1(x) ∈
L2([0, 1]).

5. Non-Existence of Regular Similarity Solutions. In many cases the exis-
tence of a similarity solution can provide us with a description of the solution profile
during quenching. However, as we will see in this section, we do not have such a
similarity solution for our problem. Our analysis will also be a guide towards ob-
taining an asymptotic expansion describing the quenching profile in the following
section. For simplicity, we take the quenching time to be t = 0 and position to
be x = 1

2 both in this section and in Section 6, provided we consider initial data

symmetric with respect to x = 1
2 . Also for simplicity we may consider λ = 1.

We take an alternative form of the local hyperbolic problem by setting U = 1−u.
Thus we have

Utt = Uxx − 1/U2, 0 < x < 1, t > 0, (5.1a)

U(0, t) = 1, U(1, t) = 1, t > 0, (5.1b)

U(x, 0) = U0(x), Ut(x, 0) = U1(x), 0 < x < 1 , (5.1c)

with 0 < U < 1 and quenching occurring when U = 0.
We set U = (−t)αv(η), for η = (x − 1

2 )/(−t) and we have ∂η/∂t = (x − 1
2 )/t2.

Then the terms in equation (5.1a) become:

∂2U

∂t2
= (−t)α−2

[
α(α− 1)v − (2αηv′ − 2ηv′) + η2v′′

]
,

∂2U

∂x2
= (−t)α−2v′′,

1

U2
= (−t)−2αv−2.

To eliminate time we must take α − 2 = −2α or that α = 2
3 and we obtain the

relevant equation for v,

η2v′′(η) +
2

3
ηv′(η)− 2

9
v(η) = v′′(η)− 1

v2(η)
,

or

(1− η2)v′′(η)− 2

3
ηv′(η) +

2

9
v(η) =

1

v2(η)
. (5.2)

A constant and regular solution of this equation is v = a with a =
(

9
2

) 1
3 .

We want to show that v = a is the only symmetric regular positive solution of the
equation and thus there is no non-trivial similarity solution of the problem. This
means that not all of the conditions v(0) > 0, v′(0) = 0, v(η) → +∞ for η → ∞
and v being smooth in its domain can be satisfied simultaneously. Indeed we have
the following:

Theorem 5.1. The solution v = a is the only symmetric regular positive solution
of equation (5.2).

Proof. We set v = a+ V and then for V = V (η) we get

(1− η2)V ′′(η)− 2

3
ηV ′(η) +

2

9
a+

2

9
V (η)− 1

a2
+

2V (η)

a3
− g(η) = 0,
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or

(1− η2)V ′′(η)− 2

3
ηV ′(η) +

2

3
V (η)− g(η) = 0, (5.3)

for

g(η) =
1

(a+ V (η))2
− 1

a2
+

2V (η)

a3
=

(3a+ 2V (η))V 2(η)

a3 (a+ V (η))
2 ≥ 0 .

Noting that V = η is a solution of (5.3) if the g term is neglected, we set V = ηq
and obtain

(1− η2) (ηq′′ + 2q′)− 2

3
(ηq′ + q) +

2

3
ηq = g(η) ,

or

η(1− η2)q′′ + 2

(
1− 4

3
η2

)
q′ = g(η),

and

q′′ +
2
(
1− 4

3η
2
)

η(1− η2)
q′ =

g(η)

η(1− η2)
.

Using the integating factor η2(1− η2)
1
3 we obtain(

η2(1− η2)
1
3 q′
)′

= η(1− η2)
2
3 g(η).

This gives

η2(1− η2)
1
3 q′ = Ac +G(η),

where

G(η) =

∫ η

0

s(1− s2)
2
3 g(s)ds .

Then we get

q(η) = Bc −
∫ 1

η

Ac +G(s)

s2(1− s2)
1
3

ds = Bc −
∫ 1

η

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

+
Ac
s2

)
ds

= Bc −
Ac
η

+Ac −
∫ 1

η

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds.

Thus due to the fact that V = ηq we have

V (η) = η

[
Bc +Ac −

∫ 1

η

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds

]
−Ac .

In order to obtain regularity at η = 0, with v′(0) = V ′(0) = 0, (i.e. demand the
symmetry condition) we have

Bc =

∫ 1

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds−Ac ,

and thus

V (η) = η

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds−Ac .
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For 0 < c = v(0) < a, we have −a < V (0) = −Ac < 0 and 0 < Ac < a. Also
for V > −a we have g(V ) ≥ 0 which additionally implies that G(s) ≥ 0. Now for
0 < η < 1 we have

dV

dη
=

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds+ η

(
Ac +G(η)

η2(1− η2)
1
3

− Ac
η2

)
> η

(
Ac +G(η)

η2(1− η2)
1
3

− Ac
η2

)
>
Ac
η

(
1

(1− η2)
1
3

− 1

)
→∞ as η → 1− ,

which implies that the solution, V , develops a singularity at η = 1.

Hence any regular symmetric solution must have v(0) > a, i.e. V (0) > 0. From
(5.2), it is clear that v is then decreasing for η small and positive. Since v must
remain positive, either it must reach a positive local minimum, say v∗, at some
point η∗ in (0, 1), or v remains decreasing throughout [0, 1], taking some positive
value v0 at η = 1. We examine the former case first.

As before,

V (η) = η

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds−Ac

and

V ′(η) =

∫ η

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds+

Ac +G(η)

η(1− η2)
1
3

− Ac
η
. (5.4)

Given that V has a minimum at η = η∗, V ′(η∗) = 0 so∫ η∗

0

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds =

Ac
η∗
− Ac +G(η∗)

η∗(1− η∗2)
1
3

(5.5)

and hence

V (η) = η

[∫ η

η∗

(
Ac +G(s)

s2(1− s2)
1
3

− Ac
s2

)
ds+

Ac
η∗
− Ac +G(η∗)

η∗(1− η∗2)
1
3

]
−Ac . (5.6)

In particular,

V (η∗) = −Ac +G(η∗)

(1− η∗2)
1
3

. (5.7)

Turning again to (5.2), it is seen that for v and V to have local minima at η = η∗,
v < a and hence V is negative at that point. It follows that

Ac +G(η∗) = −(1− η∗2)
1
3V (η∗) > 0 . (5.8)

Now Ac+G(η) = Ac+G(η∗)+
∫ η
η∗
s(1−s2)

2
3 g(s)ds ≥ Ac+G(η∗) > 0 for η > η∗ and

from (5.4) we again see that V ′ → ∞ as η → 1− so that V develops a singularity
at η = 1.

For the other case, if v is to be regular, it will have a first derivative, say v1, at
η = 1. Then (5.2) gives

v1 =
1

3
v0 −

3

2

1

v2
0

=
1

3
v−2

0 (v3
0 − a3) .

We see that for v0 > a, v1 > 0 so that v is locally increasing, contradicting the
assumption of v decreasing in [0, 1]. Taking v0 = a, v1 = 0, and we regain the
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trivial solution v ≡ a (contradicting v(0) > a). We are left with 0 < v0 < a and
v1 < 0, so that now v decreases in a neighbourhood of η = 1.

If v is to be smooth, we can differentiate (5.2) to get

(η2 − 1)v′′′ +
8

3
ηv′′ =

2v′

v3
− 4v′

9
=

4v′

9v3

(
9

2
− v3

)
. (5.9)

At η = 1, v = v0 < a and v′ = v1 < 0 so v′′ < 0. As long as v′′ ≤ 0, v′ < 0 for
η ≥ 1. Supposing that there is a first point η∗ > 1 where v′′ = 0, so that v′′′ ≥ 0 at
η = η∗, v > 0 (for the solution to still exist) and v′ < 0 at that point. Then (5.9)
gives v′′′(η∗) < 0, another contradiction. This means that v′′ < 0 for η ≥ 1, so that
v must fall to 0, and the solution ceases to exist, at a finite value of η.

Remark 7. The local behaviour of solutions which are singular at η = 1 can be
determined formally. We write η = 1 + σ so that for σ small we are close to η = 1
and the equation has the form

(2σ + σ2)
d2v

dσ2
+

2

3
(1 + σ)

dv

dσ
− 2

9
v + v−2 = 0 .

We assume that v has the form of a power-series expansion v ∼ v0 + v1σ
α + . . . , for

some constants v0, v1 and α. Then the equation becomes

2α(α− 1)v1σ
α−1 + · · ·+ 2

3
αv1σ

α−1 + · · · − 2

9
v0 + · · ·+ v−2

0 + · · · = 0 . (5.10)

The leading-order terms, which must balance, are either the first and second, for
α ≤ 1, or the third and fourth, for α ≥ 1.

Taking the first two terms to be small gives v0 = a. This is the special case of
v ≡ a. With all the terms of the same size, α = 1 and we obtain, to first-order,
v ∼ v0 + v1σ with v1 = 1

3v0 − 3
2v
−2
0 . These are the locally regular, but non-trivial,

solutions noted in the above theorem.
With the first two terms dominating, so v1 6= 0, 2α(α−1)+ 2

3α = 2α(α− 2
3 ) = 0.

Clearly we want α to be non-zero to get a locally varying solution so α = 2
3 . We

then have a two-parameter family of locally singular solutions, v ∼ v0 + v1σ
2
3 (as

indicated by the earlier estimates on the first derivative of v).

Remark 8. Asymmetric regular solutions can also be eliminated. Taking 0 < c =
v(0) < a, we are no longer able to fix Bc since we do not know that V ′(0) = v′(0)
vanishes. However, Ac = −V (0) = a − v(0) is again positive, so the key steps for
this case still apply and it is still clear that the solution to (5.2) is singular at η = 1.

With v(0) ≥ a, we may assume, without loss of generality, that v′(0) < 0. We
again have the two possible cases to consider: (i) v attains some positive minimum
(which must be less than a) at some η∗ in (0, 1); or (ii) v is decreasing in [0, 1],
taking a positive value v0 at η = 1. Case (ii) is ruled out as before. Case (i) is
likewise eliminated since, although Bc is not fixed, (5.5) again applies so that (5.6)
- (5.8) all follow and a singularity occurs at η = 1.

6. Formal Asymptotics for the Quenching Profile. For simplicity we again
consider initial data u0(x) and u1(x) symmetric with respect to x = 1

2 then quench-

ing is expected to take place at x = 1
2 .
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Now we rescale time as τ = − ln(−t) and set η = (x − 1
2 )/(−t). We then

have dτ/dt = 1/(−t), ∂η/∂t = (−t)−1η and we set U = U(x, t) = (−t) 2
3 v, with

v = v(η, τ). Thus

Ut = −2

3
(−t)− 1

3 v + (−t)− 1
3 vτ + (−t)− 1

3 ηvη,

Utt = (−t)− 4
3

(
vττ + 2ηvητ −

1

3
vτ + η2vηη +

2

3
ηvη −

2

9
v

)
Uxx = (−t)− 4

3 vηη, U−2 = (−t)− 4
3 v−2.

Therefore equation (5.1a) becomes

vττ + 2ηvητ −
1

3
vτ + η2vηη +

2

3
ηvη −

2

9
v = vηη − v−2,

or

vττ + 2ηvητ −
1

3
vτ = (1− η2)vηη −

2

3
ηvη +

2

9
v − v−2. (6.1)

We initially investigate the form of the solution near the quenching point.

Inner Solution. We expect that v tends to a, with a =
(

9
2

) 1
3 , near the quenching

point and therefore we assume that v has an expansion of the form v ∼ a + v1 +
v2 + . . . . Thus equation (6.1) gives

v1ττ + 2ηv1ητ −
1

3
v1τ = (1− η2)v1ηη −

2

3
ηv1η +

2

9
v1 +

2

9
a− a−2 + 2a−3v1 + . . . ,

on neglecting terms in v2
1 , v2, etc. Given that 2a−3 = 4

9 ,

v1ττ + 2ηv1ητ −
1

3
v1τ = (1− η2)v1ηη −

2

3
ηv1η +

2

3
v1 . (6.2)

Supposing that v1 decays algebraically in τ , (6.2) reduces to

(1− η2)v1ηη −
2

3
ηv1η +

2

3
v1 = 0 ,

which is (5.3) without the g(η) term, has no regular non-trivial solution, and is
therefore not of interest.

Therefore the next reasonable choice is to assume that v1 has a τ dependence of
the form v1 = e−ατp(η). In such a case we obtain the equation for p

(1− η2)p′′ + 2

(
α− 1

3

)
ηp′ +

(
2

3
− α

3
− α2

)
p = 0 . (6.3)

From what we have seen before, it might be expected that for general α, (6.3) has
no non-trivial regular solution. We now look for values of α for which there is a
non-trivial solution for all η.

We seek an even (symmetric) solution of (6.3) as a power series, p(η) =
∑∞
n=0 anη

2n

with a0 6= 0 and get

0 =

∞∑
n=0

((
2

3
− α

3
− α2

)
+ 4n

(
α− 1

3

)
− 2n(2n− 1)

)
anη

2n +

∞∑
n=1

2n(2n− 1)anη
2n−2

= −
∞∑
n=0

(α− (2n− 1))

(
α−

(
2n+

2

3

))
η2n +

∞∑
n=0

2(n+ 1)(2n+ 1)an+1η
2n,
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which gives

an+1

an
=

(2n− 1− α)(2n+ 2
3 − α)

2(n+ 1)(2n+ 1)
. (6.4)

We see from (6.4) that the radius of convergence of the power series for p(η) is (in
general) 1, consistent with p having a singularity at η = 1. However, the series
terminates, with p being a polynomial, p±n (η), and hence smooth for all η, for
α = α±n with α−n = 2n− 1 for n = 1, 2, 3, . . . and α+

n = 2n+ 2
3 for n = 0, 1, 2, . . . .

For the dominant, slowest decaying, behaviour, with spatial variation, i.e. de-
pendence upon η, we need α = α−1 = 1 and then a1 = a0/3 and v−1 = ce−τ (η2 + 3)
on writing a0 = 3c.

On the other hand, a slower shrinking solution still, but without η dependence,
is given by α = α+

0 = 2
3 , so that we have v+

1 = de−
2
3 τ , on writing a0 = d.

Therefore we have that the solution to the v problem near the quenching time
has the form

v ∼ a+ ce−τ
(
η2 + b0

)
+ de−

2
3 τ

and therefore for U we get approximately

U ∼ e− 2
3 τ
[
a+ ce−τ (η2 + 3) + de−

2
3 τ
]
∼ e− 2

3 τ
[
a+ ce−τη2 + de−

2
3 τ
]
,

for large η as well as large τ , or, in terms of t and x,

U ∼ (−t) 2
3

[
a+ c

(x− 1
2 )2

−t
+ d(−t) 2

3

]
. (6.5)

Outer Solution. We want an approximation for the solution of equation (6.1) valid
for η large. For η � 1 the equation becomes

vττ + 2ηvητ −
1

3
vτ = −η2vηη −

2

3
ηvη +

2

9
v − v−2,

i.e. vηη is negligible compared with η2vηη. The neglected term corresponds to
the diffusion term, Uxx of the original equation Utt = Uxx − 1/U2. Therefore to
determine the outer solution we must solve the equation

d2U

dt2
= − 1

U2
. (6.6)

Multiplying both sides of (6.6) with dU/dt and integrating results in(
dU

dt

)2

=
2

U
+ b =

2 + bU

U
,

where b is a constant of integration. Therefore we have

dt

dU
= −

(
U

2 + bU

) 1
2

,

and

t0 − t =

∫ (
U

2 + bU

) 1
2

dU.
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We set U = 2
b tan2 θ with dU = 4

b tan(θ) sec2(θ)dθ and we obtain

t0 − t =
4

b
3
2

∫ (
tan2(θ)

sec2(θ)

) 1
2

tan(θ) sec2(θ)dθ,

=
4

b
3
2

∫
tan2(θ) sec(θ)dθ.

In addition we have∫
tan2(θ) sec(θ)dθ =

∫ (
sec2(θ)− sec(θ)

)
dθ

= tan(θ) sec(θ)−
∫ (

sec(θ) + sec(θ) tan2(θ)
)
dθ,∫

sec(θ) tan2(θ)dθ =
1

2
tan(θ) sec(θ)− 1

2

∫
sec(θ)dθ,∫

sec(θ)dθ = ln (tan(θ) + cos(θ)) .

Thus

t0 − t =
2

b
3
2

[tan(θ) sec(θ)− ln (tan(θ) + sec(θ))]

=
2

c
3
2

[
2−

1
2 b

1
2U

1
2

(
1 +

bU

2

) 1
2

− ln

(
2−

1
2 b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

)]
.

Finally we have that

t0 − t =
U

1
2

b
(2 + bU)

1
2 − 2b−

3
2 ln

[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
. (6.7)

The quantity inside the logarithm can be written in the following way[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
∼ 1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . . .

Therefore we have that

t0 − t ∼
2

1
2U

1
2

b

(
1 +

bU

4
− b2U2

32

)
− 2b−

3
2

[(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)
−1

2

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)2

+
1

3

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)3

−1

3

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)4

+
1

5

(
1 +

1√
2
b

1
2U

1
2 +

bU

4
− b2U2

32
+ . . .

)5

+ . . .

]
.
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Expanding the quantities in the brackets we obtain

t0 − t ∼
2

1
2U

1
2

b
+ 2−

3
2U

3
2 − b2− 9

2U
5
2

−2b−
3
2

[
1√
2
b

1
2U

1
2 +

bU

4
− bU

4
− 1

4
√

2
b

3
2U

3
2 +

1

6
√

2
b

3
2U

3
2 − b2U2

32

−b
2U2

32
+

1

8
b2U2 − 1

16
b2U2 + 2−

11
2 b

5
2U

5
2 + 2−

9
2 b

5
2U

5
2 − 2−

5
2 b

5
2U

5
2 +

1

5
2−

5
2 b

5
2U

5
2 + . . .

]
.

After doing the appropriate eliminations we get, to leading order, that

t0 − t ∼
√

2

3
U

3
2 +

3

5
bU

5
2 + . . . .

This implies that

U
3
2 ∼ 3√

2
(−t)

(
1 + t0(−t)−1 − 3

5
b(−t)−1U

5
2 + . . .

)
or alternatively

U ∼ a(−t) 2
3

(
1 + t0(−t)−1 − 3

5
b(−t)−1a

5
2 (−t) 5

3 + . . .

) 2
3

∼ a(−t) 2
3

(
1 +

2

3
t0(−t)−1 − 2

5
ba

5
2 (−t) 2

3 + . . .

)
,

and we obtain an expression for the outer approximation.
An alternative way for solving the equation for the outer solution is the following:

We have the equation dt
dU = −

(
U

2−bU

) 1
2

, or that t0 − t =
∫ (

U
2−bU

) 1
2

dU and we

set U = 2
b sin2(θ) with dU = 4

b sin(θ) cos(θ)dθ. Then t0 − t = 4b−
3
2

∫
sin2(θ)dθ =

2b−
3
2

∫
(1− cos(2θ)) dθ = 2b−

3
2

(
θ − 1

2 sin(2θ)
)

= 2b−
3
2

(
θ − 1

2 cos(θ) sin(θ)
)
.

Thus again

t0 − t = 2b−
3
2

[
sin−1

(
bU

2

) 1
2

−
(
bU

2

) 1
2
(

1− bU

2

) 1
2

]
.

The same leading-order approximation results.
Matching. We have the approximation for the inner region being in the form, for

v ∼ a+ ce−τ
(
η2 + b0

)
+ de−

2
3 τ ,

and U = (−t 3
2 )v(η),

U ∼ (−t) 2
3

[
a+ c

(x− 1
2 )2

−t
+ d(−t) 2

3

]
.

In addition the approximation for the outer region has the form

U ∼ a(−t) 2
3

(
1 +

2

3
t0(−t)−1 − 2

5
ba

5
2 (−t) 2

3 + . . .

)
,

and in an intermediate region these expressions should be the same and therefore we

must have 2
3at0 = c(x− 1

2 )2 or t0 =
3c(x− 1

2 )2

2a . Similarly − 2
5ba

7
2 = d or b = − 2

5a
− 7

2 d
and we get t0 and b from c and d which are determined by the initial and boundary
conditions of the problem.
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Finally for b > 0 and by equation (6.7), we have

U
1
2

b
(2 + bU)

1
2 − 2b−

3
2 ln

[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
∼

3c
(
x− 1

2

)2
2a

− t

and as t→ 0−

U
1
2

b
(2 + bU)

1
2 − 2b−

3
2 ln

[
1√
2
b

1
2U

1
2 +

(
1 +

bU

2

) 1
2

]
∼

3c
(
x− 1

2

)2
2a

,

while for x→ 1
2 and U → 0 we obtain

3c
(
x− 1

2

)2
2a

∼
√

2

3
U

3
2 ,

or that the profile of the solution at the quenching point is

U ∼
(

9c

2
√

2a

) 2
3
(
x− 1

2

) 4
3

.

This gives us an (x − 1
2 )

4
3 dependence of the solution profile near the quenching

point x = 1
2 .

Note also that if we rescale to put the factor λ back into the equation, so that
(5.1a) is replaced by Utt = Uxx − λ/U2, then, according to the above analysis, we

have that U( 1
2 , t) = 1− u( 1

2 , t) ∼ aλ
1
3 (t∗ − t) 2

3 for t→ t∗−.

We note that this asymptotic behaviour for the semilinear hyperbolic problem
differs substantially from that for the corresponding parabolic problem, see [15] for
results specifically for MEMS devices and [8] for general results on the monotonic
quenching of solutions of problems which can be written in the form ut − uxx =
λ(1− u)−β . For the parabolic problem, centre manifold techniques have been used
in showing (i) that the spatially uniform quenching solution is unstable and (ii)
that the quenching profile differs from that suggested by the apparently obvious
similarity solution (const.×|x − x∗|2/3 for β = 2 and x∗ the blow-up point) by a
factor of | ln |x − x∗||−1/3. For the hyperbolic PDE, although the simple-minded
guess of a self-similar solution again suggests an |x − x∗|2/3 profile, our formal
asymptotics now give local behaviour like |x − x∗|4/3, a quite different power of
distance, apparently without logarithmic dependence.

These formal asymptotic results are not yet proved. It is possible that a centre
manifold-type approach might be useful in trying to do so.

7. Numerical Solution. We now carry out a brief numerical study of problem
(1.1), with a variety of initial conditions. A moving mesh adaptive method, based
on the techniques suggested in [4], is used. This captures the behaviour of the
solution near a singularity.

More specifically we take initially a partition of M+1 points in [0, 1], 0 = ξ0, ξ0 +
δξ = ξ1, · · · , ξM = 1. For the solution u = u(x, t), we introduce a computational
coordinate ξ in the interval [0, 1] and we consider the mesh points Xi to be the
images of the points ξi (uniform mesh) under the map x(ξ, t) so that Xi(t) =
x(iδξ, t). Given this transformation, we have, for the approximation of the solution

ui(t) ' u(Xi(t), t), that du(Xi(t),t)
dt = ut(Xi, t) + uxẊi or ut = du

dt − uxxt.
The way that the map, x(ξ, t), is determined is controlled by the monitor function

M(u) which, in a sense, follows the evolution of the singularity. This function is
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determined by the scale invariants of the problem ([4]). In our case for the semilinear
wave equation of the form Utt = Uxx − 1/Up for U = 1 − u, p = 2 an appropriate
monitor function should be M(U) = |U |−(p+1)/2.

At the same time we need also a rescaling of time of the form du
dt = du

dτ
dτ
dt for

dt
dτ = g(u), where g(u) is a function determining the way that the time scale changes

as the solution approaches the singularity, and is given by g(u) = 1
‖M(u)‖∞ (see [4]).

In addition the evolution of Xi(t) is given by a moving mesh PDE (see [4]) which

has the form −xτξξ = g(u)
ε (M(u)xξ)ξ. Here ε is a small parameter accounting for

the relaxation time scale.
Thus finally we obtain a system of ODE’s for Xi and ui. We set du

dt = v and the
ODE system takes the form

dt

dτ
= g(u),

uτ − xτux = g(u)v,

vτ − xτvx = g(u)

(
uxx − λ

1

(1− u)
2

)
,

−xτξξ =
g(u)

ε
(M(u)xξ)ξ .

We may apply now a discretization in space and we have

ux(Xi, τ) ' δxui(τ) :=
ui+1(τ)− ui−1(τ)

Xi+1(τ)−Xi−1(τ)
,

uxx(Xi, τ) ' δ2
xui(τ) :=

(
ui+1(τ)− ui(τ)

Xi+1(τ)−Xi(τ)
− ui(τ)− ui−1(τ)

Xi(τ)−Xi−1(τ)

)
2

Xi+1(τ)−Xi−1(τ)
,

xξξ(ξi, τ) ' δ2
ξxi(τ) :=

Xi+1(τ)− 2Xi(τ) +Xi−1(τ)

δξ2
,

(M(u)xξ)ξ ' δξ(Mδξx) :=

(
Mi+1 −Mi

2

xi+1 − xi
δξ

− Mi −Mi−1

2

xi − xi−1

δξ

)
1

δξ
.

Therefore the resulting ODE system to be solved, for

y = (t(τ), v1(τ), v2(τ), . . . vM (τ), u1(τ), u2(τ), . . . uM (τ), X1(τ), X2(τ), . . . XM (τ)) ,

= (t(τ),v,u,X) , v, u, X ∈ RM ,

will have the form

A(τ, y)
dy

dτ
= b(τ, y),

where the matrix A ∈ R3n+1 has the block form

A =


1 0 0 0
0 I 0 −δxu
0 0 I −δxv
0 0 0 −δ2

ξ

 , y =


t(τ)
u
v
X

 , b = g(u)


1
v

δ2u− λ 1
(1−u)2

δξ(Mδxξ)

 .
For the solution of the above system a standard ODE solver can be used such as
the matlab function “ode15i”, see [4].

In the figures of this section, the results of various numerical simulations are
presented. In the numerical method we took M = 161.
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Figure 2. The numerical solution of problem against space and
time for λ = 1.5.

The parameter used in the differential equation was λ = 1.5, this value being
chosen so as to be slightly greater than the approximate value 1.4 found in Section 3
for λ∗, above which quenching should occur by Theorem 4.2.

In Figure 2, u(x, t) is plotted against x ∈ [0, 1] and t ∈ [0, T ] for T = 1.1547.
In the next plot, Figure 3, u(x, t) is plotted against x for various times. The
uppermost line corresponds to the solution of the problem near quenching. The
initial conditions were u0 = 0 and u1 = 0.

Similar numerical simulations were carried out for smaller values of λ, still with
zero initial data. Taking λ approaching 1.4 from above, the same quenching be-
haviour was observed. This indicates that, for u0 = u1 = 0, λcr ≈ 1.4. The same
was seen to happen for non-zero initial data u0 lower than w still with u1 = 0.

From the numerical solution of problem (1.1) we have that near quenching time
t∗, ln

(
1− u( 1

2 , t)
)
∝ ln (t∗ − t) with constant of proportionality 2

3 . This is demon-

strated in Figure 4, where the fluctuations for t beyond t∗ − e−30 are apparently
due to numerical errors.

A similar plot of lnu(x, t∗) against ln(x − 1
2 ), in Figure 5, shows that u(x, t∗)

behaves like C(x− 1
2 )

4
3 near quenching. The agreement is also illustrated in Figure 6,

where the solid line shows the numerical solution of problem (1.1) at the quenching

time t∗, while the dotted curve displays 1−
(

9c
2
√

2a

) 2
3

(x− 1
2 )

4
3 . The constant c = 2.1
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Figure 3. Profile of the numerical solution of problem (1.1) for
various times, taking λ = 1.5.

is chosen in such a way so that there is agreement of the plots at the boundaries,
x = 0, 1.

Similarity Solution. It is also of some interest to investigate numerically the
behaviour of possible similarity solutions, even though we have seen that they do
not give local behaviour near quenching. We recall that we have taken 1−u = U =
(−t)αv(η), η = (x− 1

2 )/(−t), with U the solution of the equation Utt = Uxx−1/U2.
In this case the equation for v becomes

(η2 − 1)v′′ − 2

3
ηv′ − 2

9
v = − 1

v2
. (7.1)

For equation (7.1) with initial conditions v(0) = c, a positive constant, and
v′(0) = 0, we consider a uniform partition of an interval [0, L] of M points with
δη = L

M−1 and ηj = (j − 1)δη. Using a simple finite difference scheme and writing

vj = v(ηj), j = 1 . . .M , we have

(−1)
2v2 − 2v(0)

δη2
− 2

9
v(0) = − 1

v(0)2
(7.2)

for j = 1,

(η2
2 − 1)

v3 − 2v2 + v(0)

δη2
− 2

3
η2
v3 − v1

2δη
− 2

9
v2 = − 1

v2
2

(7.3)
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Figure 4. Plot of y = ln
(
1− u( 1

2 , t)
)

(solid curve) against

ln (t∗ − t) for λ = 1.5. The straight line (dashed) has slope 2
3 and

indicates good agreement between 1− u( 1
2 , t) and const.×(t∗ − t) 2

3 .
The straight line, based on the analysis of Section 6 from which
we have 1 − u( 1

2 , t) ∼ aλ
1
3 (t∗ − t)

2
3 for t → t∗−, shows y =

ln
[
aλ

1
3 (t∗ − t) 2

3

]
= 0.6365 + 2

3 ln(t∗ − t) for λ = 1.5 with a =

(9/2)
1
3 .

for j = 2 and

(η2
j − 1)

vj+1 − 2vj + vj−1

δη2
− 2

3
ηj
vj+1 − vj−1

2δη
− 2

9
vj = − 1

v2
j

, (7.4)

for j = 3, . . . ,M . From equation (7.2) we can determine v2, from equation (7.3) we
can determine v3 and then using equation (7.4) we can obtain a recursive relation
giving us successively vj+1 for j = 3, . . . ,M − 1.

In Figure 7 the numerical solutions of problem (7.1) are shown for v(0) = a −
1, a, a + 1, where a = 3

√
9
2 and M = 750 for η ∈ [0, L], L = 3.2. We notice that

for v(0) = a− 1 the solution attains a singularity at η = 1, for v(0) = 1 we get the
constant solution v ≡ a, while for v(0) = a + 1 the solution falls to zero at some
η <∞ – as indicated by the analysis of Section 5.
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Figure 5. Plot of ln(1 − u(x, t∗)) (solid curve) against ln(x −
1
2 ), for λ = 1.5. The straight line (dotted) has slope 4/3 and
the constant 1.091 is chosen so that it passes through the point
(−5.075,−5.675) on the curve ln(1− u(x, t∗)).

Discussion. In the current work we have investigated the quenching behaviour
of a one-dimensional semilinear wave equation modelling the operation of an elec-
trostatic MEMS device. After establishing local existence, we have proved that
the solution u of the equation quenches in finite time, i.e. ||u(·, t)||∞ → 1 as
t → t∗− < ∞ whenever the parameter of the problem λ > λ∗, where λ∗ is the
supremum of the spectrum of the associated stationary problem. Although this
type of result is fairly standard for related parabolic problems, it is (as far as we
are aware) new for nonlinear hyperbolic equations. We also showed that quenching
occurs in the parameter range 0 < λ < λ∗ if the initial conditions are large enough.
Similar results were also found for the practically important two-dimensional case,
and indeed for the three-dimensional case. Furthermore, in the second part of this
work the quenching profile of the solution was studied. In particular, the existence
of self-similar solutions was investigated and our main result in this direction was
the surprising one that no non-constant regular self-similar solutions occur. With
the aid of this result we studied the profile of the solution near a quenching point
and, by use of formal asymptotics, we got that the solution resembles a curve of the
form (x−quenching point)4/3. Finally, numerical solutions of the problem confirmed
the results on the quenching profile.
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Figure 7. Plots of the solutions v(η) of equation (7.1) against η
for v(0) = a− 1, a, a+ 1 .
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