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Abstract

We estimate the blow-up time for the reaction diffusion equation u; = Awu + Af(u), for the radial
symmetric case, where f is a positive, increasing and convex function growing fast enough at infinity. Here
A > X", where X" is the “extremal” (critical) value for A, such that there exists an “extremal” weak but
not a classical steady-state solution at A = A* with ||w(-, A\)||ec = 00 as 0 < A — A\*—. Estimates of the
blow-up time are obtained by using comparison methods. Also an asymptotic analysis is applied when
f(s) =¢€®, for A — \* < 1, regarding the form of the solution during blow-up and an asymptotic estimate
of blow-up time is obtained. Finally some numerical results are also presented.
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1 Introduction

Tt is known, [15], that the solution to the initial-boundary value problem

ug(z,t) = Au(z,t) + M (u(z,t)), z€QCRY, t>0, (1.1a)
u(z,t) =0, z €0, t>0, (1.1b)
u(z,0) =up(z) >0, x€Q, (1.1c)

where ug € L>®(2), Q is a bounded domain with smooth boundary, and f satisfies

f(s) >0, f'(s)>0, f'(s)>0, for s>0, (1.2a)

/00 ds/f(s) < oo, (1.2b)

for some a in R, blows up in finite time, say t*, when A > A* > 0. Typical examples of functions satisfying these
properties and arising in applications, see [8, 11] and the references there in, are: f(s) = e®, f(s) = (1+s)? for
p > 1. In this introduction we present a number of known results, some of which are needed for our analysis
in the following sections.

The “extremal” critical value of the parameter A, say \*, is such that the associated steady-state problem

Aw(z) + Af(w(z)) =0, € QCRY, w(x)=0, =€, (1.3)
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Figure 1: The response diagram for problem (1.3):
(a) the case of a closed spectrum, (b) the case of an open spectrum.

for some f satisfying (1.2a), has a unique (classical) solution for 0 < A < A* and no solution of any kind for
A > A% [4, 13].

The behaviour of the extremal solution w*(z) = w(x; A*) depends on the dimension N. In particular, in
case where 0 = B(0,1), N <9 and f satisfies (1.2a)-(1.2b) then w* € L>°(Q), i.e. w*(z) is a classical solution
of (1.3), [6]. Moreover, for any smooth bounded domain Q and f(s) = e® the extremal solution w* is bounded
if N < 10, see [8, 18]. This is the so called closed-spectrum case, see Fig. 1(a). In this work we consider the
case that there does not exist a classical steady-state solution at A = A* and ||w(-, \)||sc = 00 as A = \*—
Fig. 1(b), (see [2, 5, 8, 11, 13]). Actually this is the case for the radially symmetric problem and for f(s) = e®
when N = dim{Q} > 10 or for f(s) = (1 + s)?, when N > 10 and p > NN42\2/\/:1, [5, 11]. Recently it
was proved, see [9], that the same result holds for N > 11 even in the case of a smooth bounded domain
diffeomorphic to unit ball B(0,1).

In this case, the so called open-spectrum case, see Fig. 1(b), it has been proved that problem (1.3) has a
weak solution (“limiting” singular solution) of the form,

/ G(z,y)f(w*(y)) dy, (1.4)

where G is the Green’s function for the Laplacian (actually of —A) with Dirichlet boundary conditions, [16].
A weaker formulation, introduced in [4], for the problem satisfied by w*, taking it to be an L' (2)-function
such that f(w*)d € LY(Q) for § = §(x) = dist(x,dN), is

/Q *ACdx—A*/f ) Cdw (1.5)

for every ¢ € C%(Q) with ¢ = 0 on 0Q.
The linearized problem corresponding to (1.3) for the eigenfunction ¢ = ¢(z; A), A < \*, has the form

Ad+ A (w)p + up =0 for x € Q, ¢ =0forz €N . (1.6)



Following (1.4), a weak formulation of this problem is

amzéammnﬂmm+mmw@,xsm (L.7)

while, according to (1.5), a weaker formulation than (1.7) is
- [ 6a¢ds = [ Afw) +mocds, A<, (18)
Q Q

for every ( € C?(Q), with ¢ = 0 on 09 such that (Af'(w) + p)¢é € L'(Q). For each A € (0, \*) the
corresponding principal eigenvalue p = p(\) of (1.6) is positive, [8, 13], and p(\) = p(A*) = p*+ > 0 as
A = A*—, actually p'(\) < 0, see [8, 13]. In the open-spectrum case, when f satisfies (1.2a), it has been proved
that the spectrum of the linearized problem contains a continuum part of the form [0, u*], where p* > 0 is the
principal eigenvalue, which corresponds to eigenfunction ¢* > 0, and a part consisting of discrete eigenvalues

*

p* o= pf < psy < pi,c--, see [5, 7). Moreover there exists a positive weak eigenfunction, in the sense of
(1.8), say ¢(x), corresponding to the zero weak eigenvalue. Regarding the regularity of ¢(z) it is known that

¢ € L1(Q) for 1 < ¢ < &5 with N >3, [7].

In the radially symmetric case and for A\ > 0, problem (1.1) takes the form

%:Aru-l-)\f(u), 0<r<l, t>0, w=u(rt), (1.9a)
ur(0,t) =u(1,t) =0, t>0, (1.9b)
u(r,0) = up(r), 0<r<l, (1.9¢)

with ug(r) > 0 and (for simplicity) ugy(r) < 0. Now problem (1.3), for 0 < A < A*, is written

Ayw(r) + Af(w(r)) =0, 0<r <1, w'(0)=w(l) =0, (1.10)
where A,.(1) = 8;2) + %%
The related linearized eigenvalue problem to (1.10) is
Ard(r) + Af (w(r))d(r) + pp(r) =0, 0<r <1, ¢'(0) =¢(1) =0. (L.11)

The problem (1.11) plays an important role (at least in our methodology in which spectral properties are
used) in the investigation of upper estimates of the blow-up time, (see [3] for another method of finding upper
bounds of t*). By using monotonicity and positivity, see [16], we obtain the following limits: as A — \*—
then w(r,t; \) — u(r,t; A*) = u*(r,t)— (this solution is regular for ¢ < oo, while ||u*(r,t)||cc = ©*(0,t) = o
as t = 00) and w(r;A) — w(r; \*) = w*(r)— for r € (0, 1], where w*(r) is the singular steady-state solution
of (1.10) ([Jlw(:;A)|lec = w(0;A) — 00 as A = A*—); the same is true for the solution of problem (1.11). In
addition, we have to notice that |w'(0; \)|, |¢'(0; \)| = oo as A = A*— while w’(0; A) = 0 and ¢'(0; ) = 0 for
A < A", with the latter relations indicating that solutions are bounded and hence regular. Taking A\ — \*—, we
obtain the “limiting” problems denoted by ( )*: (1.9)*,(1.10)* and (1.11)*, (of course without the boundary
condition at r = 0 for problems (1.10)*, (1.11)*). Furthermore, in the radially symmetric case and for functions
f such that f'(w*) = ¢/r?, for some constant ¢, the principal eigenvalue pu* is provided as the square of the

first zero of the Bessel function of the first kind, i.e. J,(v/p*) = 0 for v = 4/ (V=2 _ )+ see [7]. More

7
precisely, in the case that f(s) = e® and N > 10, we have w*(r) = —2Ilnr and f'(w*) = ¢/r? = 1/r?, for
A* = 2(N —2). While for f(s) = (1 +s)?, N > 10, p > Nj\_r% Vy%, we have w*(r) = —1 4 r=2/(>=1)
and f'(w*) = ¢/r* = p/r?, for \* = 23(N — %), p > 1. Moreover, in the case where f'(w*) = c¢/r?, the

asymptotic form near zero of the eigenfunction ¢* for the following problem is known, see [7]:

d?¢* N — 1d¢* ¢
dr? (r) + r dr () + < r2

+u*> ' (r)=0, 0<r<1, ¢"(1)=0.



In particular, for \*c¢ < (N —2)2/4, (i.e. N > 10 for f(s) = e°) the asymptotic behaviour of ¢*(r) is given by
Py ~r I 0<r <, (1.12)

while for A\*c = (N — 2)2/4, (i.e. N =10 for f(s) = e®), ¢*(r) is bounded above by const.xr'~N/2|Inr| for
O<r<1.

Although cases of dimension N > 10 are artificial regarding, for example, combustion theory, higher-
dimensional models can arise in other areas, such as mathematical finance. It is now well known that systems
of parabolic semilinear equations are closely related to backward stochastic differential equations, see [17],
which have a wide field of applications, e.g. in stochastic optimal control, stochastic games, and the theory
of hedging and non-linear pricing theory of imperfect markets. Moreover, the methods developed in this
work can be adapted to other open-spectrum models involving second-order nonlinear equations as well as to
higher-order semilinear equations, see [14]. The particular case of N = 10 for f(s) = e® turns out to have a
new type of asymptotic behaviour which is expected to occur in other nonlinear problems with more obvious
physical applications. Furthermore, the asymptotic matching, in this case, is more complicated than others
recently studied, see [14], so it is worth studying as a separate case.

In the following, we seek estimates of the blow-up time in the open-spectrum case. Our purpose is to find
analytical and asymptotic estimates of the blow-up time in terms of the difference A — A\* > 0. The tools we
mainly use are comparison techniques and asymptotic methods (e.g. boundary-layer theory). More precisely,
by constructing proper upper and lower solutions for some auxiliary problems we obtain rigorous upper and
lower bounds for ¢* in the form

Ciln (In [(A = A)7']) <t < C(A=X) 772,

while using some formal arguments we derive the asymptotic estimates for t* of the form: t* ~ Ky In [(A — X*) 7]
+K5 for N > 10 and t* ~ KyIn(1/(A — X)) — Kyln|In(A — A*)| + M for N = 10, as A\ — A\*+; where
Ci, K;, i = 1,2, M are some positive constants. Our estimates are very different from the estimates were
obtained in [15] for the closed-spectrum case and derived by a substantial modification of the methods existing
in [15]. Indeed, [15] provides analytic estimates of the form

CsA=X)"12 <t <Oy (A= A*)71/2, (1.13)
and the following asymptotic estimate
e KM=V as Ao M+

for some positive constants C3,Cy, K.

The paper is arranged as follows. In Section 2, we prove the existence of an upper bound of the form
(1.13) for a general f satisfying (1.2) and of a lower bound of the form (1.13) when f(s) = e, for the blow-up
time ¢*, by using comparison techniques as in [15]; our estimates are very different from those derived in
[15] though, see above. In Section 3 we apply formal asymptotic expansion and matching techniques when
f(s) =e® and A — A* < 1 in order to obtain the asymptotic form of the solution during blow-up and hence
an asymptotic estimate of the blow-up time. For N = 10, it seems so far that formal asymptotics provide
the only way to get good estimates of the blow-up time, see also Section 5. A numerical estimate is also given
in Section 4. Finally we conclude in Section 5, with a discussion regarding the results demonstrated in this
work and remaining open problems.

2 Upper and lower bounds for the blow-up time, A > A\*

We attempt to obtain lower and upper bounds of the blow-up time t* for the radially symmetric problem
(1.9). In the following we assume that uo(r) = ug(r) < w*(r) for 0 < r < 1 and up(1) = 0.



2.1 Upper bound for t*, A > A\*

In order to obtain an upper bound for ¢* we estimate the time that the solution of the problem for v = u — w*
blows up. Note that, before the blow up time, as r — 0, v = u — w* — —o0 because u is still bounded near
r =0 and w*(r) = oo as r — 0. Following the same ideas as in [15] we obtain

ve=ur = Apu+Af(u)— Apw* — X f(w”)
= Aw+ XN f(w v+ (A=XN)f(u) + X [f(w* +0v) — f(w*) — f(w*)v]
2
= Ao+ N (W) + (A= N)Fu) + X F (2 )%, O<r<1, t>0, (2.1)
for u < 2 < w*. Set A(t fB(Ol zy(z,t)de = [ ¢(r)o(r,t)wnrN ' dr where wy = 7% /T(X) is the

area of the unit sphere B(O, 1) in RN and T is the Gamma functlon. Multiplying now (2.1) by ¢ = ¢(r), using
Green’s identity and the eigenpair (0, ¢) of the linearized problem, we derive

A'(t) > A=X)T+ChwnA* /1 rN=U () 0? (r,t) dr, (2.2)

0

for . .
I = wn £(0) /0 PNL30) dr < /0 Nt N1 F(u)d(r) dr (2.3)

and Cp = infjg ooy {f"(5)/2} > 0. In this case, in contrast to what happens to the closed-spectrum case, [15],
it is not obvious that A(t) and I are well defined. Hence we have to impose some additional assumptions on
£, see below, as well as needing some regularity results for ¢(z). In fact I is bounded since ¢(r) € LI(B(0,1))
for 1 < ¢ < N/(N —2). We require the not very restrictive assumption on f:

f'(s) > s for s> 1. (2.4)

From the weak formulation of the linearized problem (1.8), see also [18], we have the estimate:

/qﬁ x))dx —/0 wntN T o) f (w* (r)) dr < . (2.5)

Since lim,_,o w*(r) = oo, there exists 0 < rop < 1 such that w*(r) > 1 for r € [0,79]. Combining assumption
(2.4) and estimate (2.5) we infer that

"o N-17 * "o N—17 * 2 "o N—17 1/ ok
/0 PN () dr < /0 P13 (w* (1) dr</0 P10 £ (w* (1)) dr
< /erng(r)f'(w*(r))dmOO (2.6)
0

and hence

1 1
/ rN=Lo(r)w* (r) dr, / rN=Lo(r) (w* (r))? dr < 0. (2.7)
0 0
Also, as long as t < t*, u is bounded and hence fol rN’lg(r)u(r, t)dr < oo. Using now Jensen’s inequality
and an appropriate scaling of ¢ so that fol wnrN=1g(r) dr = 1, we obtain
A(t) > A= AT +AA%t), t>0 for A=Cp\*, (2.8)
and

Alt) > {(A ) ﬂ v tan {t [\ — A")TA]Y? — g} : (2.9)

from which we deduce that A(¢) must blow up at some time less than #,(\ — \*)~'/2, where t,, = w(I A)~'/2.
Hence it follows that an upper bound for the blow-up time #* is ¢, (A — A\*)~'/2. This upper bound is the same
as in the case where A* belongs to the spectrum of problem (1.10) (“closed-spectrum” case), see [15].



2.2 Lower bound for t*, A > A\*

For the lower bound of t* we have to construct an upper bound for u(r,t) which stays below the singular
steady state w*(r) for some time. Now the construction of this lower solution differs substantially from those
of [15] since in this case w*(r) is a singular (i.e. unbounded) steady state. In the following we focus on the
exponential case, f(u) = e¥, although the same arguments can be adapted to the power-law case as well. We
write u(r,t) = uw*(r,t) + ui(r,t) and since u*(r,t) is bounded from above (actually v* < w*) for any ¢ > 0,
see [10, 14, 16], it suffices to obtain an upper bound for u; (r,t). Also we take u*(r,0) = u(r,0) to ensure that
u1(r,0) = 0. Indeed, u;(r,t) satisfies

ury — Ajup = (A= X) e + A —e® ) < (A= A*)e"® + Ae uy,
since
u*(r,t) < up(r,t) = min{B(t), w*(r)},
for (t) being maxo<,<i u*(r,t) = u*(0,t).
Since ug(r,t) < B(t) we derive that uy(r,t) satisfies
ury — Apuy < (A= AP £ Xe"Puie? < (A — X*)e®®) 4 AP By et

However, when N > 10, see [10],
Bt)~Kt+0(1) as t— oo, (2.10)

for K = p*/|y1| > 0, where p* > 0 is the principal eigenvalue of the linearized problem around the singular
steady state w*, while v1 = £[~N +2+ /(N — 2)(N — 10)] is a negative constant (see also Section 3 or [10]).
In the critical dimension N = 10, see [14], we have

B(t) ~ Kot + O(Int), as t— oo, (2.11)

with Ko = p?/2 where p; is the first zero of the zeroth-order Bessel function, i.e. Jo(p1) = 0, since in this case
p* = pi, see [14].
Thus we derive that

U1e — Arul < Ay ()\ — )\*)eKt + Ag)\eKtuleul, for 0<t< >

for appropriate positive constants Aj, As. For the N = 10 case, because, of the presence of the O(In) term
in asymptotic estimate (2.11), a value K > K is chosen, ensuring that et > eFot+O(n?) " Now we seek an
upper solution of uq, i.e. a function z(r,t) satisfying

2ze— Apz > A1(\ — )\*)eKt + Ao NeFt e,
Motivated by the form of the solution of the corresponding spatially homogeneous problem, we try an upper
solution of the form

z(r,t) =a (A — \*) exp <% eK1t> W (r),
1

where a and C are positive constants to be determined below, K; > K and W(r) = In(3tL), for b > 0

2+b
sufficiently small. The spatial component W (r) of z(r,t) satisfies '
N -1 4r? — 2r2N — 2bN 4 2N
AT‘W = Wrr Wr = < -
+ r (r2 4+ b)? “r24+b r2+b
2(N - 2)
—— f 1. 2.12
< 0 or 0<r< ( )



Hence

2t —ANpz— A (N — )\*)eKt — Ay \eft 267

> (A= X)exp (A;(—Ci)\ eK1t> a(21N7+—b4) — Ay exp (Kt - A;(—C;/\emtﬂ

+As a(A — \¥) exp <% eK1t> W (r) {C’eKlt —efftexp (a(A — A")exp <% eK1t> W(r))}

1 1

A [a(2N — 4
Z ()\ _ )\*)exp (% eKlt) 01(174_6) — A101:|
1

A L
20}\ eKlt

+Agax—xnm< IR )W@Maﬁﬂ—aﬁﬂzm

1
provided that a is chosen so that a > 4;C1(1 4+ b)/(2N — 4) where
AsCA
Ci = supexp <Kt _ =222 eK1t> > 0,
>0 Ky

and

a(A — X\*)M exp (%em’j <C=1InC,

1
for M = maxy 1) W (r). The latter holds for

ren= (o (55 ) ) ~ o (v ().

for (A = \*) <« 1, where B
C'Q :CQ(A) :K1/>\CA2, C:C/G,M (213)

and C' > 1. Clearly z(r,t) satisfies the boundary conditions, i.e. 2.(0,¢) = z(1,¢) = 0. Moreover z(r,0) =
a(X — X*)eCAM K () > 0 = uy (r,0) = u(r,0) — u*(r,0). Therefore z(r,t) is a bounded upper solution of
uq for t < t¢; and hence ¢; is a lower bound for the blow-up time t*.

We have finally proved:
Theorem 2.1 For f(s) satisfying (2.4) the solution of problem (1.9) blows up at a time t* with
< w(IAX = \*)) 712,
where I and A are given by (2.3), (2.8) respectively.

For f(s) = €® the solution of (1.9) can not blow up before a time t; :

1 C
>t = — -
t* >t il In <021H<(>\_>\*)>>,

where 02,6 are given by (2.13) and K, > K.

3 Asymptotic estimate for t*, 0 < A — A* K1

We seek an asymptotic expansion of u satisfying problem (1.9) for A close to A*, provided that ug(r) = ud(r) <
w*(r) for 0 < r < 1 and up(1) = 0, when f(s) = e®. This will allow us to obtain an asymptotic estimate for
t*. We know that in this case u performs a single-point blow-up at r = 0 and a boundary layer is formed near
the origin r = 0.



3.1 Case N > 10

Motivated by [10, 15], for N > 10 we consider three important time-zones for the behaviour of the solution u
as it blows up.

Zone I: In this zone the solution u starts at its initial condition uy and approaches u* while time varies by
O(1). For 0 < § = A — A* <« 1 we have that the problem takes the form

up = Apu 4 (A" + §)e”. (3.1)

As in [10] we consider the problem near r = 0, seeking an inner approximation of w. Setting u(r,t) ~
Uqg(ryt) + 0uq (r,t) +--- in (3.1) we obtain

Ugr = Aptig + A e, (3.2)

We assume that uq(r,t) = a(t) + 2(re?®/?) = a(t) + z(¢) for ¢ = re®®/2. In addition, 2%(0,¢) = 0,
uq(0,t) = a(t), where a(t) is a function to be determined by the matching condition with the outer solution.
Then as long as da/dt < e, z, in terms of the variable £, should satisfy the equation

da(t a(t)/2 N-1
10 (14 ) = (216 + XLy 4 a0er®) (3.3)
dt 2 ¢
Thus, after dropping the O(da/dt) term, we obtain the approximate problem
" N-1 / * z(€) !
2"(€) + ¢ 2 +Xe”S =0, 0<&<1, 2(0)=2(0)=0, (3.4)
with 2/(§) = dzd(é). The solution to (3.4), according to the analysis applied in [10], satisfies

2(€) ~ =2In& — b as £ — oo, or

2(r,t) ~ —a(t) + In(1/r?) — bge® /2 as € = re?®/2 4 o,

with by a positive constant depending on the dimension N of the domain Q. Here y; = [(-N + 2 +
V(N —2)(N —10)] < 0, is the largest root of the equation

Yy —=1)+ (N —=1)y+2(N —2) =0. (3.5)
Then the inner solution of the problem in this zone gives
u~ ug ~ In (1/7%) = boe®OM/2p7 ag red®/2 5 oo, (3.6)

Regarding the outer solution of equation (3.1), we take u(r,t) ~ w*(r) 4 v (r,t)+- -+, with w*(r) = In (%),
while v; should satisfy

vy = Apop + e . (3.7)
Therefore, by using an eigenfunction approximation for v, ([10]), we deduce that
vi = vi(r,t) = (=Coe * '} (r))(1 + o(1)), (3-8)
uniformly in {e <r <1}, € > 0, for u* = p*(N) > 0 the principal eigenvalue of the problem
Apd" + NV ¢+ pg™ =0, ¢°(1) =0,

and ¢} > 0 the corresponding eigenfunction. Moreover, the constant Cy = Co(ug) > 0 is such that ||u*(-, t) —
w*(+)|]2 = e #(Co + o(1)), [10]. Thus we derive the asymptotic form of u:

u(r,t) ~In (1/r%) — Coe i (r) as r — 0+, (3.9)



where ¢F(r) ~ a1r" as r — 04, with a; > 0 a constant determined by an appropriate normalization.
In order to obtain a uniform expansion for r € [0, 1] we match relations (3.6) and (3.9) and end up with

—boe® DM/ 2 _Chare™ UM as r—» 0+ (and £ = o0). (3.10)

Thus we must have, by equating the dominant terms, of O(r"),

alt) = —% (,u*t “In (CZ:1>> : (3.11)

This analysis holds as long as e #* > § and the asymptotic expansion fails when e™#"t ~ §, i.e. for time
t~ # In($). For such large times the form of the outer solution changes.

Zone II: TIn this zone we have that e #* ~ O(§) and we use the new time variable 7 = t — # In().
For the inner solution we apply the same analysis as for zone I to obtain

w(r,7) ~In(1/r?) — boe® MM/ 21 s pe®(M/2 5 oo,
In the outer region we take u(r,7) ~ w*(r) + dv(r,7) +---. Then (3.1) becomes
Svr ~ Ayw*™ 4+ 6A0 + X + N e v + e,

and from O(9) terms we get

*

vy = A+ N e v+ et
Setting v = 6 + V, with 6 = 6(r) satisfying the equation
A0+ N g +e =0,
we deduce that § = 5 (r7* — 1), and V should satisfy
Vi = AV + XV, (3.12)
with initial condition, for 7 — —o0, given by matching with (3.8):
V =V(r,1) ~—Copi(r)e "~ as 7 — —oo. (3.13)

In order to match v with the inner solution, we must have as r — 0+
boe®(M11 /2,7 L § L Vv
—bge AT +Vir,T) |,

in other words,
1 b
V(r,7) ~— <F + Foe“(T)”“ﬂ) r’oasr — 04 (3.14)
The solution to equation (3.12) with initial condition (3.13) satisfying the boundary conditions V =0onr =1
and V = O(r") as r — 0 is simply
V(r,7) = =Cogi(r)e " 7. (3.15)

For consistency between (3.14) and (3.15),

—Coo} (r)e*“*T ~— <% + %Oea(r)%/2> P

so, to leading order,
b_oea(r)ﬁn/2 =a,Coe * 7 — 1

A



It follows that

2 bo/d
alr) ~ " o <C’oa1e—”*T - 1/)\*> ' (3.16)

This clearly matches with the solution in Zone I, (3.11), since (3.16) gives a ~ —%(ln %0 —In(Coay) + p*r)

as 7 — —oc. We also see that as 7 — 7% = uL In(Coai A*), so that Coare™ ™ ~ (14 p*(t* = 7) +...)/X*, a
blows up logarithmically:

a(r) ~ = In <7“*5(T* -7

gt by A*

We now see that in terms of the original time variable, ¢, the blow-up time is

1 1 1 N Coay
o —1 — —— | . 1
t u*n<6>+T wn( 5 > (3.17)

The contribution to the estimate of t* from the final time regime, zone III, where the relation 4 < e® does

dt
not hold any more, is less important as we can see from the following analysis.

)—)oo as T— T —.

Zone ITI: The expression for the inner solution in the analysis presented for zone I and II is not valid any

more since in this zone the relation ‘é—‘; ~ e (giving the blow-up) holds and hence
_ 2 ~ el (1% — 7.)2/71,
(T —7)
for ¢y = ln(b‘[‘)%)%. Then the form of the solution in the inner region of zone II becomes invalid for (7* —7) =

O((6=¥1(r* —71)=2/m)) or for (r* — 1) = 0(57(2+271)). In zone III we have to rescale time by taking
T=T"+ 6_(2+271)s, with s < 0 the new time variable. (Note that 74 < —2 so that §~ G <« 1asd < 1.)

The corresponding scaling for r will be r = e~ %2R = §~ @ R.
We take, for the inner region,

u(r,7) ~a(r) + W(r,7) ~ 25 Ind + W(r,1). (3.18)

7
Substituting in the equation, we derive

@ :(52+2~/1 W :ATU+/\*eu:5ﬁARW+)\*5ﬁeW.
or 0Os

Thus W satisfies the equation

W, = AgW + A%V, (3.19)
In the outer region we consider
u(r,7) ~ w*(r)+ui(r,7) 4+ ~In(1/r?) +dv(r,7) + -
~ I (1/r2) + 8 (=Cogie™ ™ + (" = 1)/A") + -

and finally we obtain

u(R, s) ~ Ind —2In R+ %R“. (3.20)

+tn

Therefore from (3.18) and (3.20), as R — oo and r — 0, we obtain the matching condition for the inner and
the outer solutions which is .

W (R,s) ~ —2InR + ? R™  for R — oo. (3.21)

The initial condition for W is taken from zone II as s — —oc. Finally, from the equation (3.19) subject to

the condition at infinity, (3.21), we deduce that W (R, s) blows up at some finite time, s*. (We might think of
problem (3.19), (3.21) as giving the final blow-up behaviour.) This gives a contribution to the overall blow-up

time, t*, of s*0~ a1 < 1.

10



3.2 Case N =10

As we have already mentioned in the Introduction, this is a delicate case and therefore it is treated separately.
Since the asymptotics of the approach of u*(r,t) to the singular steady state w*(r) can not be fully justified
via the perturbation theory of linear operators, see [14], a formal-asymptotics approach is the only way of
getting a further understanding of the asymptotic behaviour of u(r,t;A) as A — \*+.

In the critical dimension N = 10, regarding equation (3.1), we again consider three time-zones.

Zone I: In this zone, where u approaches u* from below and time is varying by O(1), we consider, as in
N > 10 case, an inner approximation of the form

u(r,t) ~ug(r,t) + duy (r,t) + - -+

where u, (r, t) = a(t)+z(€) for &€ = re®®)/2. Again a(t) will be determined by matching with the outer solution.
Also, we easily get that z(£) should satisfy the problem

2"(€) + 9 O +Xe*® =0, 0<e<1, 2'(0)=2(0)=0,

i
-z
§
hence

2(€) ~21n (%)—f‘*(bolnf-i-bl) as & — 00,

for some positive constants by, by, provided that % <& e® holds. The occurrence of the logarithmic term
is connected with the fact that v = 4 is, in this case, a repeated root of the equation (3.5), see also [14].
Therefore, we end up with an inner approximation of the form

1
u(r,t) ~1n (r_2> - {%Oa(t)e_%(t)r_4 + (bor~*Inr + byr~H)e 200 4| | pet®M/2 5 o, (3.22)

As an outer approximation we regard

1
u(r,t) ~1n (r_2> —wvp(r,t) +-- -, (3.23)
with vy satisfying the problem
U1 = Ayvr + e vy. (324)

In the following we proceed as in [14]. Applying a moderated (because of the appearance of the logarithmic
correction term in (3.22)) version of the method of separation of variables we write

vi(r,t) ~ e B GG (r) + BE)GE(r) + -], (3.25)

where the constant p and the “slowly varying” function 5(¢) will be determined later. Substituting the above
expression to (3.24) we obtain that ¢§(r), ¢7(r) satisfy

r?(65)"(r) +97(65)'(r) + (16 + p*r*) 5 (r) = 0

and
r2(67)"(r) + 97(47)'(r) + (16 + p*r?) o7 (r) = r* g5 (r).

Writing ¢4 (r) = r~* oo (r) and ¢} (r) = r=* o1 (r), we end up with the equations

raq (r) + rog(r) + p*r’oo(r) =0, (3.26)
2ol (r) + rof(r) + p’r’o1(r) = r’oo(r). (3.27)

Equation (3.26) is Bessel’s equation of order zero, so oo (r) = Jo(p1 ) for p; being the first zero of the associated
Bessel function, Jo(p1) = 0. Matching relations (3.22) and (3.23) we derive

b
vi(r,t) ~ an(t)e*%(t)r*4 + (bor *Inr +byr e 22®  as 04, (3.28)

11



while leading-order matching of (3.25) and (3.28), taking also into account that Jo(r) = Y272, W(%)% ,
requires

i %‘)a(t)e—%(t). (3.29)

It then follows from (3.26), (3.27) and some well known integral identities for Bessel functions, see for example
[1] page 484, that

! 1 1
r(oo 0y — 01 0p) = / sog(s)ds = —§J12(p1) + 57"2 (J3(p1r) + J7 (par))
r

hence 1
01(T):§J12(p1)1nr+0(1) as r— 0+

and matching with the logarithmic term in (3.28) yields

1o,
—5e*01fﬂ(t),}§(p1) ~ boe~2a(t), (3.30)
Writing
2
a(t) = p—;t +ay(t), (3.31)

the dominant balances are provided by

2
5(t) ~ PP gm0 fr) 2 m2m o

I3 (p1)
and hence .
B(t) ~ Boot #T7T00), (3.32)
for some constant 3., depending on the initial data. The latter implies that
1 8 bop%>
ay(t) ~ = 1+7>lnt+—l < 3.33
0~ 3 (14 55 B (353

Thus, from (3.31) and (3.33), we infer that «(0,¢) grows linearly as ¢ — oo but with a logarithmic correction
term in contrast to what happens for N > 10.
The asymptotic behaviour of §(t) is given by

; Boo  ,—O+=58=) 2
ﬂ(t) ~ P1IT(P1) @ P1
20272 (1)
and hence
___ 8 148
vi(r,t) ~ oot P00 P - 5 2!6130( ) “ e ety as 10 +. (3.34)
P1JipP1

In the above relation, note that the coefficient of r—* decays slower than the one of »~*Inr. Thus as ¢

increases the dominant term in the outer solution is Be t 1 12("1)e "1%*( ). This analysis holds as long as
¢=8/07 J¥(p)e=kit > § and the outer correction (3.23) becomes invalid when t=8/¢% 77 (P1) =it  §.

___8
Zone IL: In this zone we have t 727100 e=Pit ~ O(8), or t ~ piz (ln(%) - 2J2(p In(|In 6|)) 0O(1), and we
1
consider the new time variable 7 = ¢ — o(d), where o(d) = % (ln(%) - W In(]In d]) + 12%1(2)) (recall

that u* = p?).
For the inner solution applying the same analysis as for zone I we consider

1
'U/(T', T) ~ ln <7’-—2> — %G(T)Q_QQ(T)T_4 + ... as Tea(T)/2 — 00,

12



while in the outer region we assume u(r,7) ~ w*(r) + dv(r,7) + - - - with

*

vr = Apv + X% v + eV
Then setting v = 6 + V', with € satisfying the equation

A+ N e f+ev =0,
we obtain § = (r=* —1)/\* and )

Ve = AV 4+ \e?'V (3.35)
with initial condition, for 7 — —o0, determined by matching to leading order with (3.25), with § given by
(3.32):

V1)~ —(Bao/0)t BT e el i)
~ —Booe T E(r) asT — —o0. (3.36)
Again it is easily checked that the solution to equation (3.35) with initial condition (3. 36) satisfying the

boundary conditions V =0onr =1and V = O(r—*) as r — 0 is precisely V(r,7) = B e —piT o5 (r).
Also matching with the inner solution requires

1 b
V(’I‘,T)N—< +2_(:S a(t )62“(T)>r4 asr — 0+.
(Note also that the behaviour of a(7), given by the above relation, clearly matches (taking also into account

(3.36)) with the behaviour of a(t) in Zone I provided by %2 a(t)e=2¢® ~ B £8/p1 T3 (p1) g=P1t)
Following the N > 10 case, we have

1 b
V(r,m) ~ —Boo e AT Go(r) ~ =B e PIT Tt ( + 2—?5 a(t )62“(T)> rtasr > 0+.

This gives blow-up, with a(7) — 0o as 7 — 7*— or equivalently as ¢ — t*—, with 7* given by

1

¢ = .
This yields the asymptotic estimate
1.1 8 1 161n py
t'~=Sln=——F5—In|lnd|+ 5 In(A\*Bx) + —5—+o0(l) as §—>0+.
7S T ATy IO G ) )

Zone III: In this zone the relation d—‘; ~ e% (giving the blow-up) holds. Using the same arguments as in the
case where NV > 10 we derive that the contribution from this zone to the asymptotic estimate of the blow-up

time ¢* is small.

4 Numerical solutions

In order to get an overview of the blow-up process, we can obtain a numerical solution of the problem (1.9)
by using for instance an explicit finite difference scheme.

Taking a uniform grid in [0, 1] of M points with step o7, such that r; = iér, Mdr = 1, and a time step dt,
the approximate solution of the problem u; ~ u(r;j, t;) will satisfy

ot , . ' : N—-16t, , , ;
u;'H = u; + (S—Q(u;-_1 —2uj +uly )+ Tﬁ(u;“ —uj_q) + 0the", (4.1)
for j =2,..., M — 1, uh, = 0 and ui*' = wi + L5 (N + 1)(uh — u}) + Sthevi.
In Fig. 2 the solution of problem (1.9) is plotted against space and time for A > A*. In this simulation the
solution increases with time near the point » = 0 where blow-up occurs.

13
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Figure 2: The numerical solution of problem (1.9) is plotted against space and time for X > \*. The values of
the parameters used for the simulation are N = 12, A\ = \* + 0.0025, 6t = 4% 1076, ér = 0.01.

In Fig. 3 the solution is plotted against space at different values of time for A > A*. The numerical scheme
fails as t — t* near r = 0 as the solution becomes unbounded and the scheme becomes unstable. Refinement
of the partition (smaller §¢ and dz) will allow the numerical solution to be continued for slightly larger time.

In Fig. 4 the maximum of the solution, «(0, ) is plotted against time for A > A* and the numerical estimate
of the blow-up time is compared with the asymptotic estimate. Notice that the asymptotic estimate ¢, is lower
than the numerical one ¢5. The numerical error and the restriction of the numerical scheme, i.e. its failure
when the solution at » = 0 becomes very large, indicates that the asymptotic estimate given by analytical
techniques is more accurate than the numerical one.

5 Discussion

In the present work we have estimated the blow-up time ¢t* of the solution of problem (1.9). Tt is important
from the point of view of applications to estimate when the quantity u (representing, for example, temperature)
becomes infinite. Similar estimates for blow-up time are also known for the semilinear heat equation for the
closed-spectrum case [15] and also for non-local problems [12, 19].

Here a similar approach has been applied for A > A\* in the open-spectrum case when there exists a steady-
state solution w* = w(r; \*) in a weak form and we can assume radial symmetry. In order to get upper and
lower estimates of the blow-up time we have used comparison methods, while formal asymptotics were used
to obtain an asymptotic estimate of the blow-up time when 0 < A — A\* <« 1. Some numerical results have also
been presented.

Our main estimates for given A > A* are of the form C) In (ln (A — /\*)71), for the lower bound, and

Ca(X — X*)~1/2 for the upper bound. The asymptotic estimates, as A — A\*4, are found to be of the form

14
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Figure 3: The numerical solution of problem (1.9) is plotted against space for different values of time for
X > \*. The values of the parameters used for the simulation are N = 12, A = \* + 0.0025, 0t = 4 % 109,
or = 0.01.
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Figure 4: The mazimum of the solution, u(0,t), of problem (1.9) is plotted against time for X > X\*. Also the
asymptotic estimate, given by equation (3.17), for the blow-up time of the solution is plotted. The values of
the parameters used for the simulation are N = 12, A\ = \* + 0.005, 6t = 4% 10~%, ér = 0.01
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KiIn(1/(A=X*)) + K», for N > 10, and K In(1/(A = \*)) — Ko In|In(A = \*)| + M, for N = 10. Here C;, K;,
i = 1,2 and M are some positive constants. These formal asymptotic estimates indicate that the rigorous
bounds are far from best possible and it would be desirable to improve them.

We expect that for the case of N > 10 it should be possible to obtain rigorous proofs of the estimates
in Section 3. However, for the case N = 10 this is likely to be harder to do since the rigorous asymptotic
behaviour of u*(r,t) as t — oo has not yet been fully justified by the perturbation theory of linear self-adjoint
operators and nonlinear matching, see [14]. It also remains an open problem to generalize the analysis of the
present, paper to cases without radial symmetry.
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