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We consider an initial boundary value problem for the non-local equation, u; = Uz +
Af(u)/(fi1 f(u) dz)?, with Robin boundary conditions. It is known that there exists a
critical value of the parameter A, say A*, such that for A > A" there is no stationary
solution and the solution u(z,t) blows up globally in finite time ¢*, while for A\ < \* there
exist stationary solutions. We find, for decreasing f and for A > \*, upper and lower
bounds for t*, by using comparison methods. For the f(u) = e™*, we give an asymptotic
estimate : t* ~ t, (A — X) "2 for 0 < (A — A\*) < 1, where ¢, is a constant. A numerical
estimate is obtained using a Crank-Nicolson scheme.
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1 Introduction

We consider the non-local initial boundary value problem:
f(u(z,1))
(S, f(u(, 1) de)

Bi(u) := uz(x,t) £ au(z,t) =0, v ==x1, t >0, (1.1b)

ut(2,t) = uge(x,t) + A 5 -l<z<l1, t>0, (1.1a)
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u(z,0) = up(z) >0, -l<z <1, (1.1¢)

where A > 0, a > 0 and B+ are the Robin boundary operators, as defined above. The
function f satisfies,

f(s)>0, f'(s)<0, s>0, (1.2a)
f"(s) >0 fors>0, (1.20)
f(s)gs%,c>0for s> 1, (1.2¢)

for instance either f(s) =e® or f(s) = (1+s) P, p > 2, satisfy (1.2).
For the initial data uo(z) we require ug(z), ug(z) to be bounded and uo(z) > 0in [-1,1]
( the last requirement is a consequence of the fact that for any initial data the solution
u becomes non-negative sometime [15]).
It is known that the solution v = u(z,t) = u(z,t; \) of (1.1), which represents tempera-
ture, blows up in finite time ¢t* > 0 under certain conditions (large enough values of A or
of initial data) [15, 16].

The key to the study of the behaviour of u is the knowledge of the corresponding
steady problem to (1.1),

w' +pflw)=0, —-1l<z<l, (1.3 a)

Bi(w) = w'(z) £aw(z) =0, z==+I, (1.3b)
where w = w(z) = w(z; ) (see [4, 11, 15, 16]). The parameter y is referred to as a local
parameter while the parameter A as non-local, and the relation between them is

p-—2 (1.4

(1, f(w)de)

It is known that if
/ f(s)ds < oo, (1.5)
0

then there exists a critical value of the parameter A, say \* < oo, such that for A > \*,
u(z, t; A) blows up globally (u — oo for all z € [-1,1] as ¢ — t*—, actually the blow-up is
uniform in z) in finite time ¢t* and the problem (1.3), (1.4), has no solutions (of any kind).
For 0 < A < A\* there exist solutions w(z; \), and u(x,¢; \) may either exist for all times
or blow up globally depending upon the initial data (if ug is greater than the greatest
steady solution w(z; ) and (1.5) holds) [15, 16]. We may take [ f(s)ds = 1, and
in this case \* < 8, while for the Dirichlet problem \* = 8. The response (bifurcation)
diagrams for problem (1.3), (1.4) are as in Figure 1.

Our purpose, in this work, is to find some estimates of the blow-up time t* with respect
to the parameter A (more precisely, with respect to the difference (A—A*)), when A > \*.

In the physical problem modelled by (1.1), A is equal to a constant times the square
of the electrical potential difference driving an electric current through a conductor, see
[15]. Works related to this model can be found in [2, 6, 5, 7, 8, 10]. Estimates of this type
are very important since they answer to the question “when” the blow up takes place
[3, 12].



European Journal of Applied Mathematics 3

® Iwll o,

(a) (b)

FIGURE 1. The response diagram for problem (1.3), (1.4),
(a) the non-local diagram if f satisfies (1.5), (b) the local diagram.

In Figure 1(a), there may be only one or more than one turning points T;,i = 1,2, 3, ...,
depending upon f. One can find other forms of non-local diagrams in [15, 16]. Their
shapes depend upon the boundary conditions and the function f (see (1.2 a), (1.5) or
(1.2 a) together with [~ f(s)ds = 00).

Under the assumptions (1.2 a), (1.5), problem (1.3) has at least one classical (regular)
steady solution w* = w(x; \*). (We may have more than one w* when some of T, Ts, T3
etc. have the same abscissa A*). In the following, we assume that w* is unique, since in
our proofs we require only the existence of at least one w* and that the pair (w,w) at
A < X with w < w for « in (—1,1), where w is the second smallest steady solution, has
the property: w is stable while w is unstable, for A < A* and X close to A*.

Also we emphasize that for A > A\*, wu(x,t; A) blows up globally as ¢ — t*— which
means:

F(u)zlfi—)oo, ast — t"— < oo, (1.6 a)
()2, f(u)dz)?
u(z,t;A) = oo, for all z € [-1,1] and A > N\, ast — " — < o0, (1.6 D)

we will see in Lemma 2.1 that this blow-up is actually uniform in z, see also [15, 16].
One can find similar situations, concerning the blow-up, in the study of the (local)
reaction diffusion problem:

uy=Au+Af(u), z€Q, t>0, (1.7a)
Bu)=0, z€dQ, t>0, (1.7b)
u(z,0) = up(z), x€Q, (1.7¢)
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where B represents the boundary conditions (Dirichlet or Robin type), 2 is a bounded
domain of IR™, X is a positive parameter and f(u) behaves like e, i.e.

f(s)>0, f'(s) >0, f"(s) >0, fors>0, and /00 ds/f(s) < oo, (1.8)
0

see [1, 13, 14]. Again, under certain conditions, the solution u of (1.7) blows up
(Umsup;_y«_ || u(:, t A) Jloo= 00 for A > A*, t* < o). It should be emphasized that
the blow-up at (1.7) differs from that of the non-local problem in that, (1.7) does not
normally blow-up globally. Moreover there exists a turning point 7% = (A*, ||w*||s0) with
[|w*||oo < oo of the response diagram of the steady problem corresponding to (1.7). Then
the following upper and lower bounds for ¢* have been found:

t; < t* < ty where t; = ¢;(A — X*)7'/2 and ¢; some constants (¢; < ¢y ), for f which
satisfies (1.8).

Also, asymptotically t* ~ K (A — X*)"1/2 as X\ = \*+, for f(s) = e°; see [13].

In the present work, we find similar estimates for the non-local problem (1.1), for
f(s) =e~%, and for general f(s) which satisfies (1.2).

In both problems the estimates of ¢t* can be found only if the spectrum of the steady
problem is an interval closed on the right i.e. (0, A*]. It is still an open question, even for
problem (1.7), to estimate ¢* when the spectrum is an open interval, (0, A*); see [13, 14].

We organize this work as follows: In Section 2 we use comparison techniques and find
upper and lower bounds for t*, when f satisfies (1.2). In the third section we use an
asymptotic expansion and again obtain an estimate of ¢* but for f(s) = e~°. Also we
compute numerically the blow-up time ¢* and verify the previous estimate.

2 Comparison methods: upper and lower

bounds for t*, A > \*

If the function f satisfies (1.2 @), one can prove that a maximum principle holds for
(1.1) (here is where we need f to be decreasing). Then we may, in the usual way, define
upper and lower solutions of (1.1): an upper (lower) solution @ (u) is defined as a function
which satisfies (1.1) if we substitute > (<) for =, see [15, 16, 18, 19].

An upper bound for t*:
We wish now to find an upper bound for the blow-up time ¢t*. We assume for simplicity
0 < up < w*. Firstly we write (1.3 a) in a different way, by using (1.4)

w" + % =w" + A \F(w) =0, -l<z<]l, (2.1)
(f—1 f(w) dm)

2
where F(-) = f(-)/ (f_ll f(-)da:) and X is a positive parameter (eigenvalue). Then the
linearized problem of (2.1) with boundary condition (1.3 b) is :

¢+ ANOF(w;d) = pp, —1<x<1, (2.2 a)
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Bi(¢) = ¢'(z) ad(x) =0, x==+1, (2.20)
where ¢ = ¢(x;\), and 0F (w;¢) is the first variation (or Géteaux derivative) of F
at w in the direction of ¢, (F(w;¢) := F(w + ep) = J(e), and §F(w;¢) = J'(0) =
lime_m 7F(w+e¢e)—F(w) )
As regards the first variation dF(w; ¢) we have,
fg  2fw) [ fw)de

T fwydn? ([ fw) day?

In the following, in order to simplify the expressions, we use the notation:

OF (w; ¢)

1
mmw:[y%mwm

and I, (w) := I o(w,9), v, k=0,1,2,3,..., fO)(w)= %f(w), thus

fw)g  2f(w)li (w,¢)
I§(w) Bw)

OF (w; ¢) = (2.3)

Moreover, we know that the spectrum of problem (1.3), (1.4) is a closed interval from
the right, and assume that there exists a unique turning point 7%, ((0,A*] and T* =
(AN [Jw*||oo) With ||w*]|ee < o0, i.e. Tt = T*, see Figure (1la) ). The lower branch of
the response diagram is asymptotically stable with p; = pi(A) > 0 (p; is the first
eigenvalue of (2.2) for A < A*), while the upper branch is unstable with p; = p1(A) <0
([9, 15, 16, 17]). This continues to hold (with a suitable understanding of the “upper
branch”) even if there are more turning points 7.

It is known [17], (see also [1, 9]), that p1 (A\*) = pt = 0. Hence problem (2.2) at A = \*
gives

¢ N SF(w*;¢%) =0, —-l<z<1, (2.4 a)
Bi(¢*) =0, z==I1, (2.4b)

where by ¢* we denote the first eigenfunction corresponding to p; with ¢* > 0, [17].
Now, in order to find an upper bound for ¢t*, we take the difference,

v=uv(z,t) =v(z,t;\) =u(z,t;\) —w*(z) =u—w". (2.5)

Since w* is bounded, v blows up at the same time as v does and in the same way. Hence
t* = t*(u) = t*(v) and v(z,t) = oo as t — t*— for all z € [—1,1]. In the following, we
find an A-problem (see (2.19) below), where A = A(t) is such that:

A(t) < const. X ||u(+,t)]|so- (2.6)

Now (2.5), (2.6) imply t*(u) = t*(v) < t*(A4), thus we find an upper bound ¢*(A) for
t*(u).

Therefore we obtain

Vi = Up = Upy + AF (1) = gy + AF (u) — X*F(w*) —w*"
= Vg + (A = A)F(u) + X (F(u) — F(w*)) . (2.7)

By writing J(¢) = F(w* + ev), whence J(0) = F(w*) and J(1) = F(u), Taylor’s formula
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gives,

Flu) = Flw) = J(1) = J(0) = J'(0) + &)

for some ¢ € (0,1), where

J'(0) = 0F(w*;v) = {%J(e)}
Also
_ ") wf'(2)ha(z0)  2f(2)ha(zv) | 6f(2)IF(2,v)

I§(2) I3(2) I5(2) Iyz)

J'(&) = 20°F(z;v)

(
where z = w* 4+ &v and §2F(z;v) is the second Gateaux derivative). Thus from equation
(2.7) we get the problem:

A*
Ve = Ve + (A= X)F(u) + X" 0F (w*;v) + EJ”(E)’ —-l<z<l, t>t;, (2.8aq)

Bi(v) =0, z==%1, t>t, (2.8b)

v(z,t1) =ulz,ty) —w* 20 —1<z<l, (2.8¢)
(it is obvious that there exists a t; > 0 so that v(z,t) = u(z,t) —w*(x) > 0 for every
t > t1). Now we have the lemma:
Lemma 2.1 The following limit holds:
lm |u(zy,t) —u(ze,t)| =0, —-1<z <22 <1,
t—t* —

i.e. the blow-up is uniform on compact subsets of (-1,1).

Proof:  Following similar steps to those in [16], we have that the solution of ¥-problem:
V¢ =0 +gO)f(M), 1<z <1, t>0,
BL(9) =0, z==1, t>0,
Hz,0) =0, —-1<z<1,

where g(t) = (—W. Then we have the integral representation:
_1 f(u)dz
¢ =1
Wz, t) =V (¢) +/0 [(W(y,T) = V(r)Gy(z,y,t — 7')]5;71 dr, (2.9)

where G(xz,y,t) is the Green’s function for the heat equation with Robin boundary con-
ditions of the form (1.1 ) and V satisfies,
dv
=7 = 9OF(M@)), t>0, V(0)=0, M(¢)=maxu(z,1).
T
For any given fixed z in (—1, 1) the second term on the right hand side of (2.9) is much

smaller (on using maximum principle) than the first term, as t — t*—, so ¢(x,t) ~ V()
ast —» t*—, for —1 < x < 1. The function ¢ is a lower solution to u-problem, hence
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u(z,t) > I(x,t) ~ V(t), as t — t* — . Moreover since
dM av
— < M = —
T <omsonm) =4
and V(t) Su(x,t) < M(t), we get M(t) SV(t) S M(t) ast — t* —. Hence V(t) ~ M(t)
and u(z,t) ~ M(t) ast — t*—, so |u(z1,t) —u(r2,t)| < (M(t) —u(z,t)) > 0ast — t*—.
d

As regards the last term of(2.8 a) we have:

v [ AFOI () 2@ ha) | SR ()]

7O = [I&@) WHE 2EGE) T ol }
. {f”(Z) _APOREGD _ HEBEAG | 6f(Z)I%(Z)v2(Ca,t)}

26 WHE 2I(2) e

Now by lemma (2.1) we have v((;,t), v(z,t) ~ M(t), ast — t*—,i = 1,2,3. since
v=u—w" ( = G(t),i =1,2,3., are these values which come from applying the mean
value theorem to the integrals Ip(z), I11(z) and Iy2(z) ). Therefore

v 2 [F10) _AFELG) _ 2(hG) | FEORE
7O = [Io%z) IHE BG T RG) }
=v’I['(z,1). (2.10)

Since u blows up globally, see (1.6), we have that F'(u) — F(w*) — oo as t — t*—. Also
by lemma 2.1 and relation (1.2 ¢), F(u) — F(w*) ~ W > %—f for M > 1(ast — t*—).
Furthermore

F(u) — F(w*) = 6F(w*;v) + 6°F(z;v) = Ky (w*)v + [(z,t)v? (2.11)
By the fact that v ~ M (¢) as t — t*— the second term of the right hand side of (2.11),

['(z,t)v?, dominates the first one (|62F (z;v)| > |6F (w*;v)| as v — 00)., provided that
[(z,t) - 0 for t — t*—. In this case

F(u) — F(w*) ~ 4f(1M) (2.12)
and
F(u) — F(w*) ~ T(z,t)M? (2.13)

By equations (2.12) and (2.13) we have
1 M?
~ > —
4f(M) 4c
for some positive constant K. Allowing I'(z,t) — 0 as t — t*—, we would have that
3t, €[0,t*] with I'(z,t,) = 0. Then

1
[(z,t)M? which implies T'(z,t) > o > K >0,
c

F(u) — F(w") 1 >]\42 M>1 (2.14)
“ OGO T 4 ‘
and on the other hand

F(u) — F(w*) ~0F(w*;v) ~ K ~M as t—t"—. (2.15)
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By (2.13) and (2.14) we would have %—: < K4M or M < 4cK; which implies a
contradiction. Hence I'(z,t) - 0 and finally G(z,t) > K > 0 as t — t* —. Thus
relation (2.10) becomes
J'E) ~T(z,t)0® > Kv? as t—t* —. (2.16)
Also F(u) — oo as t — t*—, (otherwise u, the solution of problem (1.1), does not blow
up), then there exists a t2 > 0 so that
Flu) 2 ¢%(x) >0, ¢"(x) >0, teltz,t7), ta >, (2.17)

where 8 > 0 is a constant.
Now we introduce the ¥-problem:

A*
U, < A= AN)Bo* + U, + N SF (w*; ) + 7K\II2, 1<z <1, t>ty>ts, (2.180)

Bi(¥) =0, o ==%1, t>to, (2.18 )
U(z,to) <v(z,to) =u(z, ty) —w*(z), -l<z <1 (2.18¢)

Then ¥(z,t) = A(t)¢*(x) satisfies (2.18) provided that A(t) is the solution of the equa-
tion:
Aty = (A= X)B+ K*A2%(t), t>ty, A(to) = Ao, (2.19)
where K* = A" K inf, ¢*(z) and A(ty) = inf, %&U;(m)l, to > t2. Moreover ¥ is a
lower solution of problem (2.8).
Now the initial value problem (2.19) gives

p
K*
provided that (A — \*) < 7/2to K*.

This relation implies that u ceases to exist at finite time ¢t* with

(A= \)BE? <,

]1/2 . {t[(A B )\*)ﬂK*]l/Q _ g} , (2.20)

Alt) > [(A )

or
™

£ < R A = =X

where ¢, (A — X\*)~'/2 is an upper bound of t*, with t, = BT

A lower bound for t*:
We assume that ug(z) < w*(z) for —1 < = < 1, with By (ug) < BL(w*) at z = £1. Let
u* = u*(z,t) = u(z,t; \*) be the solution of (1.1).

In the following we use similar ideas to those in [13]. Therefore we write u = u*+u; <
u* 4+ = w* — a4+ < w* —Y 4Py, where @ is given by & = w* —u* > 0 and satisfies
(2.21), u; solves (2.27), ¢y is an upper solution of the wui-problem and ¢ is a lower
solution of the d-problem. The u-problem is defined by

Uy = —ul, — N F(u*) +w*" + N F(w*)
=gy — N (F(u*) — F(w")), -1<z<1, 0<t<T, (2.21 a)
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Bi(u) = Bi(w*) —BL(u*) =0, z==+1, 0<t<T, (2.21b)

a(z,0) = to(z) = w*(z) —uj(zr), 1<z <1, (2.21¢)

with 49 > 0, hence 4 >0, 0 <t <T <t*, for some T > 0.
We write J(e) = F(w* — ei) and examine the difference,

F(u*) — F(w*) = J(1) — J(0) = J'(0) + @, 0<é<,

where J'(0) = §F(w*; @) and

ey _ o f'R)E daf(2)a(z4)  2f(2)]aa(z, 1)
T =RED =5 IO {6
6/ ()17, (2, a)
VAo (2.22)
with 0 < z = w* — &G < w*.
Equation (2.21 a) now becomes:
S Lw)a 2N f(w) In (w*,a) A,
Up = Ugg — A 2w B lw) — —J ©). (2.23)

Since f'(2)11(z,%), f(2)l22(2,4) >0, 4 >0for 0 <t < T < t* and (1.2a) and
(1.2 b) holds, equation (2.22) gives

2

2 ~ 1
J"(€) = R(z,4) < Ig(iu*) a2f(z) + W} < Kot + K, (/_1adx> = &(41),

where Ko = Ko(T) = "2 LEED) e = SIOUOR g <t <7 < ¢

Then from (2.23) and since

o f(w )ﬂ 2f (w*) Iy (w*, @)
0F (w*;4) =
W= TRy T Bw)
we get
N . . A"
Ut > Uge + X OF(w*; 0 )—7(I>(u)
Now we introduce the function ¢ = Iffrf:, where K», to are to be determined. The

function ¢ satisfies

A*
1/}t < wzz + A" (5F(’U1*,1/J) - 7‘1’(1/1);

or
K2¢* K "
= - < TN O (w*; 9"
Vo=~ < o 1 (w*; 6]
2
>‘* KQ * 2 ! *
AN N K
e | o (¢7(@) + 1(/1¢<m>dm)],
provided that we choose Ko = 1/"7 sup,[Ko ¢* (z) + ¢K—(;)] Also we take

to = Ky sup, #5;() s0 we have ¢(z,0) = £22° < ii(,0) = do(z) = w*(z) — ug(x).
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Therefore 1) is a lower solution of @-problem.

We now write © = u*+wu; < w* and find an upper solution of u;-problem. The equation
for u; is
Uty =1z, +H(A = A )F(w") + A (F(u) — F(w"))
- N (Fu*) - F(w")), -l<z<l, t>0. (2.24)

We again examine the difference A (F(u) — F(w*)) and, writing v = v — w*, (—w* <
v <0), Ji(e) = F(w* +ev), 0 <e<1, we have:
f'(w)v 2f(ﬂ)*)[11(w*;v)> A

AF() = F@) = M) = 5,0) = 3 (Jt ke o)) o 2,

=X F(w";v) + (A=) F(w*;v) + %Rl(z,v) =

=\ F(w*;v) + Qw™, z,v), (2.25)
where
JI'(61) = Ri(z,v) = [31(2) [I3(2) v f"(2) — 4v f'(2)]11(2,0) To(2) — 2f(2)Io(2) Ina(z,0)

+6£(2) In(z) I, (z,v)] , z=w"+&w.

Also by writing u* = w* — 4 and Jy(e) = F(w* —et) = F(¢), the quantity
A* (F(u*) — F(w*)) is written:

X (P() = Flu)) = =3 (R(1) = Jy(0) = x° (L - 2t

B ()
- D (©) = N6 Flutsa) — S Ra(G ), (2.26)
with
B(©) = Ra(Co) = 315 [B(Q) & £(0) = 4 F(OR () 1) = 27(O(0) Bn(C.)

+6£(¢) 1o(¢) If1 (¢, a)] -
Thus the u;-problem now becomes

wip =t (A = X)F(w®) + A*8 F(w';v) + Q(u*, 2,)
A*

— A% F(w*;ﬁ)—?Rg(C,ﬁ), -1l<z<l, t>0, (2.27 a)
Bi(u1) =0, z==£1, t>0, (2.27b)
ui(z,0) = uo(x) —u*(z), —1<z<l1, (2.27¢)

where 0 < 2z, ( < w*, 0 < & <w*, u<u <w*asfar as u < w*, so that Q(w*, z,v),
J¥ (&) are bounded from above and below.
Hence we can always find By, B> such that

*

A
Q(’w*,Z,'U)<B1, _7 51(52)<BQ
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From (2.24) - (2.27) we obtain :

! * 2 *\ [ *’
Uiy < Ul gy + (>‘ - )\*)F(’LU*) + A" |:f].-g(EI’L)U)2;) - f(w]'é(z*(;u v)

) f'(w**);i 3 2f(w*)111(71’*’a)] + Bi + Bs.

I§(w I§ (w*)
Due to the fact that uy = v — u* = v — w* + w* — u* = v + 4, the previous relation
becomes:
frwSur  2f(w*) i (w*,w)
< A=XN)F(w*) + \* — By + Bs.
Utg \ulzz+( ) (w )+ |: Ig(w*) Ig(w*) + b1 + D

Then we introduce ¢, = [(A — A*)At]¢*. By substituting ¢ for u; in the right hand side
of the above relation, we get

1/]1zz+(>\—A*)F(U)*)+>\* [f;élg;)jéjl _ 2f(w*[)g{2;}(:1)”,¢1):| +B1+B2 < (A—A*)A(f)* — %,

or
F(w*) +T < Ag",
where I' = (B; + B2) /(A — A*); thus it is sufficient to choose A = sup,,
If v — 41 > 0 then we have:

F(w*)+T
o* ’

Kyop*
t+to
The right-hand side of the above relation is no greater than w*, as long as
Ky¢*
t+to

uLw -+ =w — + (A= A)At o .

>(>‘_>‘*)A¢*t7 .’I,'E[—l,l],

so that
Ky > (A= X")(t + to)At.
Hence we require
A=A)At? + Atg(A =X\t — Ky <0,
which for A sufficiently close to A* (A > A*) gives
t< (A= A)72,

with ¢, = L(£2)1/2 Hence, as long as u = u(z,t) < w* at t = t;(A — X\*)~/2, we deduce
2UA

that ¢* > t;(A — A*)~'/2 and #;(A — X\*)~'/2 is a lower bound for ¢*.
3 Asymptotic estimate of t* for small (A — A*)

We now examine the special case f(s) = e~*. Motivated by Section 2 we wish to
find an estimate for the blow-up time t* of problem (1.1) as an asymptotic series in
0<n=(\—X)/2 <« 1. We again assume that uo(z) < w*(z) for —1 < z < 1, with
B+ (up) < Bi(w*) at x = £1.
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Following similar ideas to [13] we consider three intervals of time, say I, II, and IIL. In
I and III ¢ varies by O(1) and we expand u ~ u* + n?vy + ... as n — 0. More precisely, in
I u* < w* since up = ufj < w* in [—1,1], while in IIT »* > w*. Moreover in I

*

A It

u* ~wt — as t — 0o,

with I, = f_ll Ro(z,¢*)dx, z = w* + %qﬁ* with ¢ > ¢t and Ry is the second order
residual of the Taylor expansion (see previous sections or below). This can be obtained
by assuming that u* ~ w* + %qﬁ* as t — oo and substituting this expansion in the

equation for u*, we find that K = —)‘%Iz.
In ITI, again v* ~ w* — )‘j’—;p t =t,+% for some large t. (t« ~ t* for n — 0).
In the interval II, we expand u ~ w* + nug + n?vy + ... as n — 0, and on making a

change in time scale t = 7/7, equation (1.1) gives:
7721}07' + 773U1T Tt U);I + NVoga + 772’0111 +.t AR(’?): as n —0, (31)

where

R e~ (W +nvotn®vi+...)
F(u) ~ R(z,t;n) := R(n) = - 5, asn — 0.
(fq e—(W*+nU0+nzvl+---)dw)

We require an expansion for R(n) as follows

2
R(n) = R(0) +nR'(0) + T-R"(0) + ... (3:2)
From (3.1), (3.2) we obtain
772U0T + 7731}17' + .o~ w:c:t + N0 22 + 7727}1” + ..

+(\* + 1) <R(O) +nR'(0) + 77—221%"(0) + ) . (3.3)

As regards the boundary condition By (u) =0 at z = £1, we have
w*' (£1) + ooy (£1,7) + n?v1,(£1,7) + ... (3.4)
~ Fow* (£1) F nave(£1,7) F n°avi (£1,7) + ...
We equate the terms of zero order (O(1) or O(n°)) and we get
W +ATR(0) =0, —-1l<az<l1, (3.50)
Bi(w*) =0, =z==1, (3.5b)
R(0)=ev"/ (f_ll e’ da:)2, where problem (3.5) is actually problem (1.3). By looking

now at the terms of O(n) we have

Voge FAR'(0) =0, —-1<uz<1, (3.6 a)
Bi(vg) =0, x==1, (3.6b)

* *
2e” " file Y wodx

where R'(0) = § F(w*;vp) = ————20__ + (%, e da)°

(J2y e do)

. Problem (3.6) has
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the form of problem (2.4), thus we can write

Vo = A¢* (37)
where now we normalize ¢* according to f_ll ¢**dz = 1. Looking next at the O(n?) terms
we have

Vor = Vigge + R(O) + %R”(O),
which becomes
e " )\*vge’w* Moe ™ 2\ e " S, (vo)
Vor = Vigy + o T rruia el "
S5(@*)  S§(e%) S3(47) S3(47)
2X*e~ " S} (vy) 3 A e=%" Sy (vg) N 3X*e~%" 52 (uy) (3.8)
S5 (¢) S3(¢) So(6") '

where now we denote by I, p(w*,v) = (—=1)"Sk(v) with Si(v) = f_ll e W okdr, k=
0, 1,2,3 and So(¢*) = S().

Multiplying (3.8) by ¢*, integrating over [—1, 1], applying Green’s identity, using (3.7),
and the normalization of ¢*, we obtain

- : NeWgt 2N Si(¢7) S1(6")
_ w1l 1 1
A(r) = [1 <¢ 52 + Sz > vidx + S2

H*%? (S3(¢*)S3 — 6S1(8*)S2(¢*)So + 653 (¢")) . (3.9)

The solution w* of problem (3.5) is of the form w* = 21In(8 cos(yz)) with 3, to be de-
termined. This will give that A\ = 8sin®(y) exp(—(2ytan(y))/a) and for A = \* we should
have a = tan(y*) (tan(y*) + 7* sec?(y*)) , thus we get \* = 8sin”(y*) exp(—2v*/(tan(y*)+
v*sec?(y*)) and

o — 29* tan(y*) + 2l <cos(7 m)) ‘
! cos(v*)

Also the solution ¢* of the linearized problem (2.4) is equal to ¢* = 90*/(f,11 ©*2dx)'/?,
where ¢* is the solution (non normalized) of problem (2.4). Moreover

©* = cot(y*) + tan(y*) — ztan(y*z).
Having the explicit forms of w* and ¢* we can now calculate the quantity
S = 83(¢*) 8§ + 657 (¢*) — 651(¢*) S2(¢*) So.
Thus we obtain

2v* tan(y*) % sect(y*)
S = exp(—?) cos3(7*)} ——% (49" — 29" cos(27") + 3sin(27")),

,y*
which is always positive for 0 < v* < . Therefore the equation (3.9) can be written as
. S1 . S
A(T) = o5 + X' 557 A%(1), A1) = —o0 as 7= 0, (3.10)
So 255

which has solution

A(r) = (52)* tan |7(BK)= —

T
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for K = A\*S/2S3, B = S;/S2. Returning to the original time variable this expression
becomes

A(t) = (%% tan [t()\ ~A)Y2(BK)3 — g] .

Because of u = w* + nug + ... and vo = A(t)¢*(z), it is obvious that u ceases to exist at
time

[N

by =ty (A — )™
where t, = 7/(BK)'/? and t;, is the blow-up time of A(1) = A(t(\ — \*)).

Numerical Solution:

We solve problem (1.1) by using a Crank - Nicolson scheme. For the linear terms we
apply the usual form of the scheme i.e.

r r
—=u" 4 (r+ DulT - =

r n n r " N
2 j Uit = Ui+ (L =r)uf + guj_y + 5t AF (uf)

where u is the temperature at the nth time level and at the jth space grid, r = ((;STtP
and the non-local term F'(u?) is evaluated at the nth time step when we are solving a
system of equations to evaluate temperature at the (n + 1)th time step. For this term we

have

Fu)
(2, Fupyaa)’

The integral in the denominator is evaluated by Simpson’s rule.

F(u?) =

o 500 1000 1500 2000 2500 3000

FIGURE 2. Numerical solution of problem (1.1). We plot the max.(u(z,t)), for z in [—1,1]
against time (the upper curve corresponds to A > X", the intermediate to A = X" and the lower
one to A < X* ).

In Figure 2 we use this scheme to solve the problem numerically for f(u) = e * and
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taking u(z,0) = 0, @ = 1. We see that for A < A* the solution u tends to a steady state,
for A = A* the behaviour is similar, and for A > A* the solution blows up (the decay
is faster for A < A* than it is for A = A*). More precisely, in Figure 2 the maximum of
solutions are plotted against time.

In Figure 3, we plot the numerical estimate of the blow-up time together with the
asymptotic estimate of it.

1.2

0 L L L I
[o] 50 100 150 200 250

FIGURE 3. Numerical solution of problem (1.1) for A > X*. Again we plot the max, (u(z,t)), for
z in [—1,1] against time. The solid vertical line t7 ~ 181.25 indicates the numerical estimate of
the blow-up time, while the dotted vertical line t5 ~ 203 indicates the asymptotic estimate of it.

4 Conclusion

In this work we have dealt with the estimate of blow-up time ¢*. It is interesting from the
point of view of applications to know when the temperature u becomes infinity, which
means, in many cases, depending on how the model arises, the blow-up might correspond
to a short-circuit or a circuit breaking. Similar estimates are also known for the reaction
diffusion problem [13]. In both cases the results are obtained when 0 < A — A\* < 1 and
for problems in which there exists a steady solution w* = w(z; A*) of the time dependent
u-problem at A = \*. Here the methods that are applied are comparison techniques and
asymptotic expansion, as well as numerical computations. Our main result is the estimate
t* =t,(A=X)"1/? as 0 < A= X\* « 1, where t, is a constant and X, \* are given. It re-
mains an open question how to estimate ¢* when there is no regular solution w* at A = A*.
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