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Abstract

In the present work a model considering the melting of an inhomogeneous material,
such as a mixture or solution, during Modulated Temperature Differential Scanning
Calorimetry (MTDSC), is derived and analysed. It is considered that during the
melting of such a material a mushy region is formed and initially the behaviour of
the material at the microscale is analysed. Then with the method of averaging a
phase field type model is constructed for the macroscale, which consists of a system
of partial differential equations and this is solved numerically. Finally the results
are used to simulate the signal of MTDSC.
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1 Introduction

Modulated Temperature Differential Scanning Calorimetry or MTDSC is a
method of measuring thermal properties of materials introduced by Reading
and collaborators ([12] - [15]). In this method, conventional DSC is used with
the modification that the usual programme of linear rising temperature is
modulated by a periodic perturbation.

During an experiment, a sample of material under investigation is placed in
one of two pans, the other of which is empty but otherwise identical, and these
pans are positioned symmetrically within the calorimeter. Heat is supplied to
(or removed from) the calorimeter in a controlled (and spatially) symmetric
way so that the sample’s temperature follows a preset programme. The tem-
perature difference between the sample and the reference is monitored. This
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gives a measure of the rate of heat intake (or output) by the sample and allows
quantities such as the heat capacity to be determined. This measure of heat
transfer is split into a slowly varying part, the “underlying signal”, and an
oscillatory part (or at least the first harmonic) the “cyclic signal”. These two
signals can both be used in an experiment.

In standard MTDSC, heating/cooling is done sinusoidally. Provided the am-
plitude is small enough, the sample also behaves linearly. This means that
every quantity, f(7y) depending on temperature Ty = bt + Bsin(wt) can be
linearized and written as f(7Ts) = f(bt) + Bsin(wt)f'(bt). There will also be
sinusoidal heat intake/output and all temperatures can be thought of as con-
sisting of an underlying and a cyclic part, the latter having negligible higher
harmonics.

Both the underlying and cyclic parts of the temperature are fixed by con-
trolling heat supply. The amplitude B can be increased/reduced by varying
the amplitude of the heating. There will, in general, be a phase difference
between the heat supply and the temperature of the sample, and this phase
will normally vary during the course of an experiment. The actual phase of
the temperature is not particularly important for an analysis of the results
and we shall generally take the sample temperature oscillations to be simply
Bssin(wt).

The simplest model for the calorimeter (see [8]) is given by neglecting its inter-
nal heat capacity and, without loss of generality, a pair of ordinary differential
equations represents the heat flows into the pans with their associated changes
of temperature:

dQs
dt

dT
dt

dQ,  _, dT,
dt Cr

= (C, + Cy) + F = Ko(T, — Ty), = Ko(T, — Ty).
Here K is the heat transfer coefficient between the pans and with the exterior
of the calorimeter, C, is the heat capacity of the pan, Cy is the heat capacity
of the actual sample, and F' is the rate of heat absorption by the sample by
any chemical reaction, phase transition, etc. The temperature of the furnace

Tr has been eliminated because of symmetry (see [8]).

The temperature difference of the reference and the sample, AT = (T, — Tj),
solves the equation

IAT dT
o2l kAT =0
ar a

with K = 2K,. For B small enough to allow linearization we have AT =



AT + AT and F = F + F = F + Re{F exp iwt} so that

while

- Cy —iF/Bw
AT = BwRe { =" /2% iwt |
< 6{ K +iwC, }

Finally the underlying and cyclic measurements of heat capacity C' and C
respectively will be given by

C'=C,+ F/b, (1)
C=|C, + F/wB|, o)
where by, |-|, we denote the amplitude of a quantity. To see how the melting of

such an inhomogeneous material affects the output from an MTDSC run, the
underlying and cyclic rate of heat absorption F and F have to be calculated.

In reference [8] while more sophisticated models (one-dimensional, asymmetric
etc.) are derived, it is shown that the basic principles of the MTDSC process
are expressed fairly accurately by the simple model presented here.

In this work the focus is the behaviour of the MTDSC signal during the melting
of an inhomogeneous material, such as a mixture or solution. Thus the main
problem, studied here, is the modelling of the melting process inside the sample
pan for such a material. In this way we can determine the heat absorption F'
for this specific process. Then we can use the ODE model, presented above,
for the calorimeter as a whole to simulate the MTDSC signal in this case.
Therefore to see how the melting of such a material affects the output from
an MTDSC run, the underlying and cyclic rates of heat absorption F, F have
to be determined. Knowledge of F and F allows us to use formulas (1) and
(2) and to simulate underlying and cyclic measurements.

Previous works, regarding modelling of phase transitions during MTDSC, have
been done, in the case of a pure material in [8] and [11], in the case of glass
transition in [5] and in the case of polymer melting in [9]. There is also interest,
regarding calorimetric measurements of thermal properties of inhomogeneous
materials (e.g. see [2] and the references therein). Therefore it would be useful
to derive a phase field model, including microscale characteristics, in order to
obtain a more accurate view of the process. In such a way we can obtain an
initial idea of how the MTDSC signal is affected by the thermal properties of
the material, as for example by its latent heat, during the melting process. In
the present work, a simple consideration of such a phase field model, which
can be solved numerically assuming spherical morphology reasonable for an



amorphous material (e.g. [2]), is derived and used for the simulation of melting
during MTDSC.

More sophisticated macroscopic models for melting, derived from averaging
microscopic Stefan problems, are studied in [6] and [7], where an attempt is
made to indicate what sort of macroscopic models might be obtained from
averaging Stefan problems, for general initial and boundary conditions. These
models result in nonlinear parabolic equations for the temperature field (for
the macroscale) inside the material. A more in depth application of the results
in [6], and [7], in the case of melting during MTDSC, will be the subject of
future work. However a simple example, of how one of these models can be
adapted in the analysis for MTDSC measurements, is presented here. Note
that the simulations of the MTDSC should be interpreted qualitatively.

In section 2 the melting of an inhomogeneous material, in which it is assumed
that a mushy region is formed with inclusions of one phase in the other, is
modelled using averaging. In this way, from solving a Stefan problem for the
microstructure, we derive a phase-field type model for the macrostructure (for
more about phase-field models see [3], [4]). The resulting equations form a sys-
tem of partial differential equations for the underlying parts of temperature
and mass fraction. Then by making the assumption of having a material of
large latent heat, i.e. small Stefan number, we conclude with a simplified ver-
sion of the model. This is solved numerically using a finite difference scheme
in section 3.1. In section 3.2 the cyclic parts of temperature and mass fraction
are obtained using numerical and asymptotic methods for large frequency and
by linearizing quantities depending upon temperature. This model initially is
derived by considering that the melting temperature is given by the Gibbs
- Thompson condition. At a later stage the condition for the Kinetic under-
cooling is added in section 3.3. In section 4 we consider the case of having
a material with small latent heat, i.e. Stefan number of order one, and we
present, the basic results of this consideration. In section 4.1 one of the models
in [6] is analysed regarding an MTDSC run. Furthermore the heat flow inside
the pan, for these various considerations, is calculated and is used to simulate
the form of an MTDSC signal. In section 5 we conclude with a discussion
about the results of this work.

2 Derivation of a Model Considering the Formation of a Mushy
Region

A representation for the melting of an inhomogeneous material can be made by
constructing a model which takes into account the formation of a mushy region
inside the sample during the melting. The sample will be taken to be a slab
(such as a thin disk) and essentially one-dimensional. The disc is symmetric



so we need to study only one half of it. The surfaces of the disk are taken to
have temperature Ty controlled in the usual way, Ty = T, + bt + B sin(wt) (see
18], [9], [12] - [15]). Considering now the melting process inside the sample we
assume that the part of the mushy region, which is near a purely liquid zone,
consists of small shrinking solid spheres imbedded in liquid and that near
a purely solid zone we have small liquid spheres growing in solid. We start
with the problem in the ‘microscale’ (this is the scale of a small sphere in the
mushy region; its small size will allow us to take the temperature around it to
be approximately constant). In Figure (1) we see a schematic representation
of the mushy region.
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Fig. 1. Representation of a mushy region. The shaded areas are these of the solid.
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The problem of the shrinking of a small solid sphere in liquid is described in
more detail as follows:

In the liquid and solid parts of the mushy region the temperature 71" satisfies
the heat equation

or

— =kV°T 3
where p is the density, ¢ the specific heat and k£ the thermal conductivity. For
simplicity p, ¢, k are taken to be the same for both the liquid and the solid
phase. The temperature at liquid-solid interface is assumed to be given by the
Gibbs-Thompson condition (see [10], [16]),

Tm == Tmo - O'SIC, (4)

with og being the surface tension, K the curvature of the interface, measured
to be positive in the direction from solid to liquid, and 7}, the melting tem-
perature for a flat interface. The Stefan condition gives the motion of the
boundary

oT]’
Ele—| =
lanlz pEV



where g_:’ is the normal derivative of the temperature measured positive from
the inside to the outside of the sphere, £ the latent heat and V' the speed of

the boundary.

. . . . . L
We scale time, ¢, temperature T', and length, x, with typical time ¢, = L,/ %7
(Ls is the half length of the pan, i.e. we scale time with the time needed
for the whole sample to melt; we need this to link this problem with the

macroscopic one), t = t,7, typical temperature Ty = %\/%, T = Tru,

and some intermediate length L, (small compared with the size of the pan,
ie. LL—’: < 1), = Lz, where 7, u and z are the dimensionless time, the
temperature and the space variables respectively and b is the rate of linear
rise of temperature. We have scaled the variables so that we can see the effect
of the latent heat, which is the dominant. Choosing this time and temperature
scale we have the Stefan number, £* = LL—TZ% = LL—’:% = LL—”:ch % which
is small because of the factor LL—m < 1, appearing in the expression for €*. In
addition, assuming that we have a material with large latent heat, ¢* should be
even smaller. In any case we take terms in £* negligible and this will result in
having the temperature profile both in liquid and solid zones approximately
harmonic. Then the temperature field both inside and outside, but near, a

solid sphere is given, in spherical coordinates, by the equation

Pu 2 du ou

_ *

o rar T o

where r, is the nondimensional distance from the sphere’s centre. The scaled
temperature at the interface will be

o
Uy — Uy — =

R

with 0 = LZSTT, Uy = 7;2’;0 and R being the nondimensional radius of the
solid sphere. (The dimensional radius is Ry = L, R.) The Stefan condition in

dimensionless form will become

-2

Assuming that the sphere’s size is small compared with the scale of the spac-
ing between the spheres in the mushy region, we can take the temperature
away from a sphere, #, as constant with respect to microscopic length scale.
Therefore it depends only upon the macroscopic position and time, 8 = 6(y, 7)
for y being the scaled macroscopic position. Thus we require u ~ 6(y, 7) for



r large. The temperature 6(y, 7) solves a macroscopic problem. The tempera-
ture outside and near the sphere, after solving Laplace’s equation in spherical
coordinates, is

Oy, 7) — ug) R + o

r

(6)

u="0(y,1)—

Note that for the temperature inside the sphere we have % = 0 because of
symmetry, the fact that V?u = 0, and the Gibbs-Thompson condition. This
results in u being purely a function of time inside the sphere. The radius R
is given by the Stefan condition, in equation (5), and by combining it with

equation (6) we obtain,

OR
R?E + (0(y,7) —ug)R + o = 0. (7)

We now derive the macroscopic problem. We have that the temperature in
the sample will satisfy the heat equation but with a heat sink due to the heat
absorbed by the melting of the small solid spheres:

or

peor = kEV2T + pLN 4m R Ok,

ot

The heat sink, pL N, 47 R? ‘98’% , is proportional to the rate of change of volume of
a number N, (measured in m~3) of small solid spheres contained in a unit vol-
ume, having each one volume equals to %Ri. (Volumetric heat sink= pL xrate
of change of volume of a spherexnumber of spheres/unit volume). We now
scale length with L,, x = Ly, and the rest of the variables in same way as we

did for the microstructure problem and we obtain

- 4 Narr?, (

L, )2 OR
or

L— R2Ea (8)

where ¢ = cLs\/%, the dimensionless Stefan number for the problem in the
macroscale. It is useful for the rest of our analysis to express the radius in
terms of the solid fraction. The solid fraction is related to the radius of a
sphere R in the following way: a = N, R? = N,47L3 R®. Expressing R in
terms of a we have the relations N,T L3 R® = «, and N,4FL3 3R?9E = Ja.
Then the field equation takes the form

0 _, (L,\20a
5=V (1) 5 (9)



Equations (9) and (7), expressing R in terms of « can be rewritten as

a0 O O 1 B
€5, = VO0(y, )+ Cm@’ 5 + Ch(0(y, 7) —ug)a® + Cr, =0, (10)

2 b
for Gy = (£)". Also Gy = NydnL3,0 and C, = 35 (Nydm)® L2,.
In a similar way, near the purely solid zone we may assume that we have small
liquid spheres growing in the solid. The mass of the liquid in that case is 1 —«
and the corresponding equations are

D gy 0,00, 00
These two systems of equation express the two extreme cases of heat being
absorbed in the mushy region, while in the purely liquid and purely solid
zones the temperature satisfies the heat equation. From the solution of the
microscopic problem near the pure liquid zone we have that the mush variation
gives an effect like s, while near the pure liquid zone it gives (1 — a)%. In
order to get some law for the behaviour of the mush throughout the sample we
construct a function expressing the heat absorbed by the melting which near
the pure liquid zone behaves like a3 and near the solid zone like (1 — a)3. It
should also account for the change in sign of the C} term. A simple example
of such a function f is

+ Co(0(y,7) — uo) (1 — @)% — Cp = 0. (11)

W=

f=Cul(y,7) [(1 = a)o]

taking uy = 0, for simplicity. Indeed when « is close to zero, i.e. when we
have small solid fraction, we have that f = C,0(y,7)[(1 — Oz)a]% — Cp(2a —
1) ~ C,0(y,7)as + Cj, which is in agreement with equation (10). For o
close to 1, which means that the liquid fraction is now small, we have that
f~=Cn0(y,7)(1— a)é — C%, which is the same as in equation (11). Therefore
this function, f, has the required properties. We do this to avoid the difficulty
of determining the rate law when neither solid fraction nor liquid is small (and
the microscopic problem is much harder to solve).

- C’k(2a - 1), (12)

The temperature field will be described by the system of equations

0,
65 =V e(ya T) - Cmfa (13)
where g—i =—f. (14)



The function f is defined to be:

0 in the purely liquid zone,
J =19 Cub(y, ) [(cre — a)a]% — k(20 — 1) in the mushy region,  (15)

0 in the purely solid zone.

In (15) we have accounted for no change of phase in the purely liquid (o = 0)
and purely solid (o = 1) zones. We have also replaced the factor 1—a by a.—a,
with a, close to but greater than one to allow melting to occur (modelling
nucleation); otherwise if v = 1 initially, f as given by (12) would lead to
a = 1. In the following simulation we shall take the sample to be a one-
dimensional bar. At one end, y = 0, we take as boundary condition a linear

rise of temperature, 0(y,7) = %T = C,,7, and we assume symmetry so that
at the other end, y = 1, we take the temperature gradient to be zero, g—z =0.

We also take the bar to be initially solid, a(y,0) = 1. Note that the boundary
condition 0(y,7) = C,,7 at y = 0, indicates that for the time being we drop
the modulation. In the next section we will solve the problem numerically and
calculate the underlying parts of temperature and solid fraction. Addition
of modulation in the boundary condition and therefore the cyclic parts of
temperature and solid mass fraction will be considered in section 3.2.

We may assume here that ¢ < 1 in the case of having large latent heat, so we
may neglect terms in ¢, which is a situation that we are going to consider in
the next section. For example, taking some typical numbers found in [1], for
a sample of amorphous silicon, and some typical parameters for MTDSC run,
in [8], (¢ =1.0273 x 10® J kg7"°K~!, p = 2.33 x 103Kg m™3, k = 0.7 x 10°W
m K1 £ = 1790 x 103] kg !, L, = 10 *m, b = 20K sec ') we have
€~ 2x 1073 < 1. We will consider the case of having ¢ ~ O(1) in section 4.
Regarding the latter we can see, by taking typical values from [2], that this
can be a situation arising in solutions.

3  The case of small Stefan number (¢ < 1).

Here we make the assumption that the latent heat is large so that ¢ < 1
and therefore we can neglect the time derivative in equation (13) which now
becomes

V20(y,7) — Couf =0 (16)
or V20(y,7) — CuCf(y, 7) [(ae — a)a]® + ConCi(2a — 1) = 0.



Note that, in more detail, we could consider a perturbation expansion for # in
equation (13) , 8 = 6y + e + ... and this gives, for ¢ < 1 together with the
reasonable assumption that C,,C,,, C,,C} are of order one or larger, that the
resulting equation for f is equation (16). For simplicity we drop the notation
of #, and we write # in the rest of this section, bearing in mind that here 6 is
the first order approximation of equation (13). This approximation can allow
us, when ¢ < 1, to apply a faster in computation time numerical scheme than
the one applied in section 4.

This is the most interesting case for an MTDSC run because it allows us to
see the effect of temperature modulation in the MTDSC signal (we have a
significant cyclic signal). As we will see in section 4, taking € ~ O(1) we have
a cyclic signal which is not affected by the melting process and remains much
smaller than the underlying one.

3.1 Numerical Scheme and Simulation

In order to solve the system of equations (14)-(16) we use the following pro-
cedure. Initially we have that the solid fraction is a(y,0) = 1 so we solve the
equation (13) for 0(y, 7) taking o = 1. After time o7 the change in o will be
given by the solution of equation (14), using an explicit Euler method for each
space grid point: knowing # from our previous step, say n — 1, we calculate
« at the current, nth, time step. Then we solve (13) using a finite difference
scheme for this nth time step and at the same time step we evaluate f from
6(y,7) and a. Then we proceed at the (n + 1)th time step in the same way
and so on.

For the numerical solution of (13) we apply the following finite difference
scheme. We divide the interval [0, 1] into S’ — 1 intervals and we denote by 67
and o} the values of 6 and « at the nth time level and at the jth space grid
point. We define fi(a}) = C; (o (a. — a}’))% and fy(af) = Cj(2a} — 1), where
C* = C,,C, = 3% (N,dn)5 L2, Cf = C,,Cy = NydrL,,L2o. Also we take each
space step and time step to have length dy and 67 respectively. With regard
the boundary conditions we have that at y = 0 the temperature is equal to
the programmed temperature at the nth time step, 67, while at y = 1 we
have that g—z = 0. So taking an (S + 1)th point in the space grid we have

5.1 = 05_,. Taking these relations into account at each time step we solve
the system of linear equations

10



Sy fi(al) —2 1 0 0> f2(a)oy? — o
1 oy2fi(ed)—2 ... 1 03 fa(a})dy?

0 2 5y2f1(a’§_1) —2 0s_1 fg(ag_l)"5y2

Then we obtain a;’“ using the following explicit scheme

W=

Oé;“rl — a}‘ + o7 { [—G?C’n(a?(ac — Oz?))

| + (207 — 1)} (17)

In the following figures, (2) and (3), the results of the simulation for an un-
modulated external temperature are demonstrated. In Figure (2) we can see
temperature and solid fraction against space and time. In Figure (3) in (a)
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Fig. 2. Temperature and solid fraction

the solid fraction a against y, after the time that the liquid zone appears,
is plotted. We see that the solid fraction decreases over time. In (b) we see
the temperature profile against space for different times. It decreases with y
and the stars denote the position of the free boundary at each time step. « is
plotted against time for each space grid in (c). Initially « is close to one and
then drops to zero starting from the point y = 0. Finally in (d) temperature is
plotted against time for different positions. The upper line is the temperature
profile at y = 0 and the lower one is the temperature in the middle of the
pan, y = 1. The values taken here (and in the rest of the simulations in the
following subsections) are C,, = 1, Cy, = 1, C,, = 1 (this is rather unrealistic
but we take this in order to simplify the analysis), o, = 1.001.

3.2 Modulation

Now we take the temperature at the left of the ‘bar’ with a modulated term
added fs = 0(0,7) = C,,,7 + [Im{e*°7} at y = 0. Note that we can linearize

11
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Fig. 3. Profiles of temperature and solid fraction against space and time

any quantity dependent in fg, for [/C,, = B/bt, < 1 which is the case for a
typical MTDSC run (see [8]).

The system of equations to be solved is again

O
V29(y, T) + Cmg = 07
Cmg_(j = —C30(y,7) [(0c — a)a]® + Cf (20 — 1) =—0(y, 7) fu(a) + fo(a),

where fi(a) = C* [(ae — a)a]%, fa(@) = C¥(2a—1). We write the temperature
f and solid mass fraction « in the form

0=0(y,7)+10s = 0(y,7) + LIm{0(y, 7)e™°"}
a=a+la=a+ I Im{ae™}
where § and @ denote the underlying parts, 6 and & the cyclic, and 0 and &

the complex amplitudes of f and « respectively. Substituting these expressions
for # and « into the system of equations to be solved, we obtain to the O(1),

0*0(y, ) oo

T + CmE =0, (18)
Oa _
g = 0y, 7)fi(0) + fole). (19)

This system of equations for the underlying parts of # and « is the same as
the one solved numerically in the previous section.

The O(l) terms in the system are

12
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o T ar

e == fn @)+ 9793 () | +2ia,

=0,

where (%) =CF (e — d)d]% (ae—2@). We substitute f and & by Im{fe®o7}
and I'm{ae™7} respectively and we make the approximation, for large w,
J (A twoT

5 (Qe™oT) o~ iwo@e™T, The first equation of the system becomes

0%0(y, )

53 T iCmwod =0, (20)
Y

with 0 =1 at y =0, ‘g—z =0 at y = 1. The second equation gives for &,

) B —f1(@)0(y, )
R (COREES Ry

(21)

and after applying the same approximation, results in a simpler algebraic
equation, namely

0

C1mWO

d(yaT) = fl(d)é(yaT)' (22)

This system of equations (20) and (22) can be solved numerically. Since § and
@ are already known, we can find 6 using a finite difference scheme at each
time step, and then evaluate & from its algebraic relation with 6.

In Figure (4) the amplitude of temperature modulation and the amplitude of
the solid fraction are plotted against space and time for C =1, C} =1, a. =
1.001, wy = 100. We notice that & is getting smaller with time, throughout
the sample. Also the amplitude of the temperature, 0 initially decreases and
then gradually increases till it recovers its initial value, @ = 1, at the last time
step when the melting is completed.

3.3 The Temperature at the Moving Boundary Given by the Gibbs- Thompson
Condition and Kinetic Undercooling

We now take the temperature at the moving boundary to be given by the
Gibbs-Thompson condition with kinetic undercooling (see [10], [16]). For small
liquid spheres in solid we have that the melting temperature is

13



Amplitude of temperature modulation. Amplitude of modulation of solid fraction.
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for ¢, a constant. The remaining equations of the small-scale problem are,
again,

0’u  20u ou

o2 " ror Cor
and @S—G—R
or z_ or

The solution of the field equation around the sphere will be, similarly to before,

(cu% — (0(y, ) — uo)) R+o

u="0(y,7)+
and, substituting this into the Stefan condition, we have for %

OR
E(RZ +c,R) = R(0(y, ) —up) — 0.

We express R in terms of the solid mass fraction, as previously, and we obtain
the equation

g—i (1 + Cu(1 - oz)*%) = —Co(0(y,7) — up)(1 — a)§ 4Gy,

with C}, and C,, = (Ns%”)*%meu, constants related to the surface tension and
the kinetic undercooling respectively.

Finally we have

14
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Fig. 5. Temperature and solid fraction

oa  —Cp(0(y,7) —up)(1 — 0‘)% + C

or (1+Cu(l—a) F)

The term C,,(1—)~% in the denominator is the contribution from the kinetic
undercooling to the variation of a. Taking C,, = 0 we recover the result when
the temperature at the moving boundary is given only by the Gibbs-Thompson
condition.

A similar argument applies in the case of having small solid spheres in liquid
and the resulting equation for « is

wl—=

da —Ch(0(y, ) — up)

—Cy

or (1 + C’ua_%

As with the purely Gibbs-Thompson condition, to get an equation applicable
everywhere, we combine the results obtained for the small liquid spheres in
solid and the small solid spheres in liquid. The resulting equation is

The macroscopic problem can now be solved in exactly the same way as before.
We solve the system of equations (18) and (19) but with having now the
functions f; and f5 being

15



Amplitude of temperature modulation. Amplitude of modulation of solid fraction.
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wl=

Ci(1 —2a)

Ch(0(y, 7) — uo) [a(ae — a)] .
(1 + Oy a1 — a)]_Tl>

(1 +Cyfa(l— a)]_Tl>

) f2:

fi=

In a similar way as before the problem is solved numerically and the results
are demonstrated in the following figures, (5), (6), (7) (C,, = C, = C, =
1). We see that the results are qualitatively similar to those without kinetic
undercooling. The melting process in this case is slower and this is due to the

kinetic undercooling assumption.

In Figure (7) we can see a simulation of the heat flow measurement in MTDSC.
The measurements for heat capacity will be given by the heat flow just inside
the sample i.e. by g—g([), 7). The heat absorbed by the sample will be

L, Ls
oT oT O
F=2 — =2 — 25.LM | —
Sck (an)x:o Scpco/ 5 dr +2S.L 0/ Y dx,

where S, is the cross-section area of the pan and M the mass of the sam-

ple. Therefore we have that the underlying and cyclic measurements can be

obtained by formulas (1) and (2) respectively, with F' = 25 kIt (g—z) , and
S y:

F = QSck% (g—z) o Note that, with terms in £ neglected, the heat flows
S y:

vanish unless melting is occurring. The underlying signal is always larger than
the cyclic one (in the case that the melting temperature is given only by
the Gibbs-Thompson condition the result is qualitatively the same). In real
experiments we see this characteristic in the measurements (see [12] - [15]).
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Fig. 7. Simulations of the form of heat flow measurements in the sample pan when
the melting temperature is given by the Gibbs-Thompson condition with kinetic
undercooling.

4 The case of having the stefan number of order one (¢ ~ O(1)).

In this case where we have a material for which ¢ ~ O(1), the assumption of
dropping the time derivative in equation (16) is no longer valid. However the
model can be treated in a similar way. The equations to be solved are (13),
(14) and (15). In such a case we can approximate the solution of (13) with an
explicit finite difference scheme.

0T
07 =07 + 55 (051 = 207 +0720) — o7 (A1(0)6] — fola])).
We pose the same boundary conditions as before, i.e. 6(0,7) = Cp,,7 and
3—2(1,7) = 0, and for initial condition 6(y,0) = £((1 —y)* —1). The latter
comes from solving the heat equation. We assume that temperature T, before
melting starts, has the form T'(z,t) = T(x) + bt + BIm{T(z)e™"} for t < 0
(while the sample remains solid). This gives that for ¢ = 0, T'(x) is approxi-
mately T'(z,0) ~ —22[L2 — (L, — x)?). In this way we can obtain a numerical
approximation for the underlying part of # while at each time step « can be
approximated by equation (17). The effect of keeping the time derivative in
equation (13) is that the material needs more time to melt due to the heat
absorption related with the heat capacity of the sample.

As regards the modulation, following the same procedure as in section 3.2 the
resulting equation for the amplitude of temperature modulation is

POwT) i, Cnf1(@) +elb=0 (23)
o ) 0 ]+ imo ’
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with § = 0, at y = 0 and g—z = 0, at y = 1, while the equation for the
amplitude of the solid fraction & is given again by equation (21). Note that
for large frequency, i.e. wy > 1 and with e ~ O(1), we have that the term
multiplying 0 can be approximated by iwpe so equation (23) becomes

9%0(y, T . oA
% + iwpeld = 0. (24)

This gives § = e "DV 3 sinh [(z +1) %y]/cosh [(z + 1),/%]+e’(”1) oY,
Using the numerical approximation for # and this expression for é, a simula-
tion of the MTDSC measurements is possible and this is demonstrated in
Figure 8. In 8(a), the plots correspond in the case of having a Stefan number

Time Time

Fig. 8. Simulations of underlying (solid line) and cyclic (dotted line) forms of
MTDSC measurements of heat capacity, in the case that the melting temperature
is given by the Gibbs-Thompson condition.

of order one, e ~ 0.577. Also wy = 500, I/C,, = 0.01, C} =1, C}, = 1 and
C,, = 10%. By increasing the frequency we would obtain a cyclic signal to
be much smaller than the underlying one and being equal to the level of the
heat capacity of the sample during the process. In figure 8(b), similar plots
are made for £ being small (¢ = 2 x 1073 and the rest of the values taken
are as in 8(a)) so that the approximation of neglecting the time derivative
from the field equation is valid. We see that in this case (large latent heat)
we have a significant cyclic signal related to the latent heat of the sample. A
material with larger latent heat, and even smaller Stefan number, would affect
in having even larger cyclic signal, which could possibly exceed the underlying
one. Addition of the kinetic undercooling effect would have the same effects
as those discussed in section 3.3.
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4.1 Alternative consideration for the functional f

In order to adopt in our model more accurate forms of f we can consider the
models derived in [6] and [7] which adress the full problem in the microscale
in various cases. Here we present the simplest of the considerations derived in
[6]. Tt is however more difficult to treat numerically the more advanced of the
these models.

According to the simplest of these models the sample is one-dimensional
medium with nucleation cites at which melting can initiate, spaced regularly,
the separation of neighbouring cites being 2L,,. The melting temperature de-
pends only in the kinetic undercooling; u,, = ¢,V for ¢, a constant. Following
similar considerations as these presented here (for more details see [6]) the
equations derived are:

00 0%0 Oa

R S 25
“or oy? Ot (25)

da _ 0,  where <0 or >0 with [, 0dr > A, (26)

or —%, where § > 0 and [{,, 0dr < A,

with, s(y) = 7, being the macroscopic free boundary separating the solid

region from the mushy region (7 is the time when @ first reaches 0 at a point
y), for A = O, Lmk

ULpLZ:

This system can be solved with a similar finite difference scheme to equa-
tions (23) and (17) but with f being f = ¢ when melting is occurring and
zero otherwise. Thus with the appropriate boundary and initial conditions we
can obtain §. With regard the amplitude of # the usual analysis results in 0
satisfying the equation

200y, 1) (1 -
Tgﬂ - <X + Zw()e) 0 =0. (27)

Thus § = e~ V1/Miwoginy [\/1/)\ + iwoy] /cosh [\/1/)\ + iwo] — e~V /Aoy Ty

Figure 9 the position of the macroscopic free boundaries, separating solid from
mush, and mush from liquid, are plotted against time.

We can see in this simulation that there is a time period that all three phases
coexist. The simulation of the MTDSC signal given by this model will give the
usual bell-shape underlying measurement and a constant cyclic measurement
during the melting time because 0 does not depend on the variation of &.
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Fig. 9. Free boundaries separating the solid, mushy and liquid region during the
process, for e = 1, A = 0.1.

5 Conclusions

A model allowing for the formation of a mushy region can be taken as a
first step for the representation of the melting of a material such as a mixture,
solution or an amorphous material with initially uniform solute concentration.
By averaging over ‘small’ regions in space which contained many small spheres
of one phase inside the other - with temperature given by the curvature at
their interfaces - the problem can be reduced to a coupled system of differential
equations for the temperature and the mass fraction of solid. These are solved
numerically, initially in the case of having a small Stefan number, i.e. large
latent heat, and at a later stage in the case of having a Stefan number of order
one, i.e. having the effect of the latent heat comparable with that of the heat
capacity of the sample. The underlying and cyclic parts of the heat flow inside
the sample can then be separated, by using an asymptotic approximation for
small amplitude and the underlying and cyclic measurements can be obtained.
The inclusion of the kinetic undercooling in the condition for the temperature
at the interface modifies slightly the model and the results are similar. It can
be seen that the effect of the kinetic undercooling is to slow down the melting
process, as one should expect. Also it is noted that alternative considerations,
based on the same idea of averaging microscopic models, can be adopted for
the analysis of the MTDSC.

The MTDSC signal is simulated and the cyclic signal appears to be smaller
than the underlying one throughout the melting process. It is found that for a
material with large latent heat we should expect a significant size of the cyclic
signal compared to the underlying one, while in the opposite case the cyclic
signal remains within the heat capacity levels of the sample.
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