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Abstract

In the present work we derive and analyze a model considering housing allocation
of homeless families due to a natural disaster; we use data from the earthquake
of September 1999, in Athens, Greece. We derive a non-linear system of ordinary
differential equations and analyze the stability of this system. Also we find an ap-
proximate solution of the model for a case study as well as and a numerical solution.
Finally we consider possible extensions and improvements of the model making it
more realistic.
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1 Introduction

We are interested in investigating a problem concerning housing allocation
of homeless families due to a natural disaster. Our purpose is to derive a
mathematical model and to analyze it, taking into account data from the
earthquake of September 1999, in Athens, Greece. The location of the epicenter
of the earthquake, in 7/9/1999, was 18 km NE of Athens and its magnitude
was 5.9 of the Richter scale degrees. About 700 people where wounded and
143 people lost their lives while about 70000 families became homeless.

In 1996 the European Study Group with Industry considered a similar problem
related to the number of homeless people in the United Kingdom. The aim was
to analyze a model, considering the mobility, of homeless and non-homeless
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people and in particular to see how these figures might be affected by different
housing policies regarding various categories of people [3]; work [3] was
extended further in [4], [5], [6].

This work is motivated, apart from [3], and also by [1] where a model about
the evolution of population of tourists in Tenerife is demonstrated.

The analysis of such a model could be useful for welfare planning by the
state. Prediction of at least qualititative characteristics of homeless and non-
homeless population flows could lead to a better programming by the state to
cope with the problems created by a natural disaster e.g. planning appropriate
stock of tents or prefabricated houses etc. Also another aspect could be the
estimation of the cost and time of resettlement for the victims of a natural
disaster.

Here we derive a model considering a number of homeless people at some
initial time after the natural disaster. We attempt to analyze the flow of this
population to a temporary state (tents, prefabricated houses, relatives etc.)
until their resettlement in a permanent residence.

In Section 2 a fairly simple model is derived. This model consists of a system
of non-linear ordinary differential equations (ode’s). The population is divided
into three different categories regarding their allocation state. These are: a)
homeless families, b) families in temporary accommodation and c¢) families
that they have been resettled; modelling the flows between them leads to a
system of ordinary differential equations.

We also study the possible steady - states of the system and analyze the
stability of the model for the possible positive equilibrium points that can be
found. For some specific cases the stability of the system cannot be deduced
immediately and center manifold analysis is applied.

Moreover, we consider a case study concerning the earthquake of September
1999, in Athens, Greece, and by using data from census taken by The National
Statistical Institute of Greece, we estimate the coefficients of the flows in the
model. We solve numerically the system of ode’s using a Runge-Kutta method
and the results are analyzed. Also for certain choices of the coefficients of the
flows we find an asymptotic solution of the system.

In Section 3 we apply similar analysis to a more sophisticated version of this
model, considering the families in temporary accommodation in more than one
category. More specifically, we have the families living in temporary accom-
modation divided among those living in a camp site organized by the state,
those living in self-provided temporary accommodation, and those living with
relatives and friends’s house.
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Fig. 1. Schematic representation of the model

In Section 4 we discuss the results of this work and the possible improvement
of this model making it more realistic and conclude with the results of this
work in Section 5.

2 Derivation of the Model

We consider three categories of population: a) number of families that become
homeless after the natural disaster (having houses destroyed or badly dam-
aged) denoted by W = W (t) (families living in badly damaged houses will also
be included in this category), b) number of families that are accommodated
in a temporary state (families living in tents, prefabricated houses or hosted
by relatives and friends) denoted by @ = Q(¢) and c¢) number of families that
are resettled in a new home, denoted by R = R(t). The variable ¢ represents
the time after the natural disaster.

We assume [3], that the rate of change of number of homeless families accom-
modated in temporary accommodation will be jointly proportional to W and
to the number of available temporary accommodation @), — ), where @), is
the number of temporary accommodation available in stock by the state. Also
the number of homeless families being resettled will be jointly proportional to
W and to the availability of houses allowing families to resettle R, — R, where
R, is the number of houses available.

Thus the rate of decrease of W will be given by the following equation

O = kW (Qu— Q) ~ (R, — R), 1

where k; and ky are positive constants of proportionality.

The rate of change in the number of families living in temporary accommo-
dation will be proportional to W (Q, — @) and to the number of families that
are resettled Q(R, — R). Therefore we have



d@Q
=L = kW (Qu — Q) — ksQ(Ra — R), 2)
where k3 is a positive constant of proportionality, while for families resettled

we have

(kW + k@) (B - R). )

We assume also that the population remains constant during this process
therefore

Wy =W(0) =W(t) + Q(t) + R(t). (4)

Finally, using equation (4) we can eliminate equation (3) so that a system of
two ordinary differential equations and an algebraic one is formed, for £ > 0:

T KW (Qu Q) kaW(R, — ), 5)
% :]i'lW(Qa - Q) - k3Q(Ra - R)v (6)
Wo=W(0) = W(t) + Q(t) + R(t), (7)

where , and R, are positive constants of availability, being independent of
time, so the system is autonomous. In order to derive this model we make the
following assumptions. a) Birth or death rates can be neglected because we are
interested in a time scale shorter than a generation. b) The number of families
is large enough to be considered as continuum, so P, (), R are considered to
be non negative real functions of time no greater than Wj. ¢) Rates depend
only on present time and delays are negligible i.e. there is an infinite fast rate
of rehousing. d) Finally the conservation principle for the number of families
is applied.

Estimation of the k’s. Given the system of equations (5) and (6) we re-
quire that the values of P(t), Q(t), R(t) are consistent to the data (Ps, Qs, Rs)
from the January 2000 census concerning earthquake victims at time £, = 3
months after the earthquake. Therefore, at ¢t = ¢; we must have Q(ts) = Q5 =
43,559 families, R(t;) = Rs; = 19,008 families and W (t;) = W, = 5,469

families.

The results of the census are demonstrated in Figure (2). In our analysis we
neglect for simplicity the category “Other cases”.

We also have that at time ¢t = 0, W (0) = W, = 70,099 families while Q(0) =
R(0) = 0. Then we consider a function G(ki, ko, k3) = (W (ts) — Wy, Q(ts) —
Qs, R(ts) — R). Finding the zeros of this function gives an estimate of the



Symbol | Categories Number of families
P Organized camp 5,528
T Isolated tent 11,780
T Trailer 906
T3 Hotel 270
T, Ship 59
Ts Stadium 47
F Guest with friends or relatives 24,969
Q Sum of families in temp. accommodation 43,559
R Renting house after the earthquake or resettled 19,008
W Living in a badly damaged house 5,469
N Other cases 2,063
Wy Summary of all categories 70,099

Fig. 2. Demonstration of the results by the census of January 2000 regarding victims
of the earthquake in Athens.

values of k's. We solve this equation numerically, as a transcendental equation
with an iteration scheme. We start with an initial guess of the £'s and in each
step of the iteration scheme the system of equations, (5) and (6), is solved
numerically, with a Runge-Kutta method, to give W(t,), Q(ts), R(ts). We
make this initial guess so that k; and ky are much larger than ks. This is
due to the fact that we expect to have a very quick decrease of the number
of homeless people settled in a temporary accommodation (supplied by the
state) or permanent accommodation (for those families that they have the
financial ability to do so). Also we expect to have a slow flow from people
already in temporary accommodation to a permanent residence, something
that it is expressed by the size of k3. Moreover, we assume that there is enough
availability in both temporary and permanent accommodation, that is R, =
100 x 10% units of permanent accommodation and @, = 200 x 103. Proceeding
in such a way we find that k; ~ 88 x 10~° per families per year, ks ~ 31 x 10~°
per families per year and k3 ~ .9 x 10~ per families per year.

Taking another choice of initial conditions, with @, = 70 x 103 units of tempo-
rary accommodation and R, = 100 x 10 units of permanent accommodation,
the same procedure gives k; ~ 119 x 10~° per families per year, ky ~ .5 x 10°
per families per year and k3 ~ 1.3 x 1075 per families per year. This set of
values correspond to a situation where initially the number of homeless peo-



ple decay rapidly while, due to the fact that constants of availability (Q, and
R,) are not very large, the majority of families are accumulated in temporary
accommodation in the initial stage of the process.

Note that the first of the above considerations correspond to a situation where
a respectable number of families move to permanent accommodation immedi-
ately while the second consideration corresponds to a situation where, initially,
families can only settle to a temporary accommodation (e.g. due to financial
inability). In general we will consider these two cases which are more close to
reality. Other considerations could be possible as well as with a more in depth
statistical research of the population motion in order to obtain more accurate
and realistic estimates for the k’s.

We scale quantities representing number of families W, @), R with the initial
number of homeless families Wy so that W = x1Wy, Q = x.Wy, R = x3W)
and as time the time that the system needs so that W becomes very small, %,
i.e. t = tyT where ty = 1/k;Wy. Therefore the system of equations, for 7 > 0,
become:

dl‘l

= —ayry(ca — 29) — asxy(c3 — x3), (8)
% = a1 (c2 — T2) — aswa(cs — x3), (9)
21(0) =1 = 2, (7) + 2o(7) + 5(7). (10)

with 21(0) = 1, 22(0) = x3(0) = 0 and ¢ = Qu/Wo, ¢3 = R,/Wy. Also
a; = ki/ky =1, ay = kao/ky, a3 = k3/ky. In the rest of the analysis we keep
the notation for ay, even if this is scaled to be one, in order to have generality
in our results.

In order to investigate the stability of the system we find the equilibrium
(stationary, steady - state, fixed) points which are solutions of the following
set of algebraic equations:

—a1x1(02 — IL'Q) — a2x1(03 -1+ r] + 1‘2) :0, (].].)
a1x1(02 — ZUQ) — Clgl'Q(Cg -1+ xr] + l‘z) =0. (12)

We obtain the following sets of solutions z; = 0, x3 = 0orz; =0, x5 = 1—c3,
orzy =1—cy—c3, T =0 andxlzw, xgz%z(jgl).\?\/e
are especially interested in the state of the system expressed by the solution
x1 = 0, 9 = 0 because we expect to have no homeless families or families in
temporary accommodation after enough time has elapsed. The Jacobian JF

of the system is

JF(QTl,l'Q) =
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Fig. 3. Phase plane of the system of equations (8) and (9).

—Q1Cy — a2(03 — 1) — 2@2£U1 + (Cll — GZ)ZUZ (Cll — ag)l'l
a1Cy — (a1 + a3)x2 —Clg(Cg — 1) — (1 + a3)x1 — 2@3372
where for x1 = xo = 0, JF has eigenvalues \; = —ajcs + as(1 — ¢3), Ay =
Clg(l — 63).

Stability of the point (0,0). The stability of this point depends crucially
on the value of ¢3 i.e. on the availability for resettlement. If ¢ > 1 then the
two eigenvalues of the Jacobian of the system become negative and this point
is asymptotically stable by linearization. In the case that ¢ < 1 we have
Ao > 0 and this point becomes unstable. Finally it remains to examine the
case c3 = 1; then we have \{ = —a;¢o < 0 and Ay = 0. The presence of the
zero eigenvalue indicates that we need further analysis in order to investigate
the stability of this point for c3 = 1.

Center manifold analysis for ¢ = 1. The matrix of the linear approxi-
mation of the system is

—Qa1Co 0
JF(0,0) = ,
a1Co 0
with eigenvalues A\ = —ayc; < 0 and Ay = 0. We now proceed by using the

theory of center manifolds [2], (linearization and Liapunov functional do not
help in this case). The eigenspace which corresponds to A; is Ey, = {(x1,23) €
R? : ; = —z,} and it is asymptotically stable, while F\, = {(z1,2,) €
R? : z; = 0}. For the stability at (0,0) as well as of E), we find the center
manifold: W, = {(z1 ® 13) € R? : 2y = h(xq), h : E)\, — E)\,}, where &
denotes the direct sum. The function h cannot be defined uniquely but has a
unique Taylor representation at the neighborhood of (0,0), say V' = V/(0,0),
with A(0) = A'(0) = 0; therefore we seek a function h of the form h(xy) =

Y



A2+ Bad + O(|za|*), xo € VN E),. We differentiate z; = h(zy) with respect
to 7 : @y = h/(22)&2. The system of equations (8), (9) and the form of h give
x1 = h(x9) = 0, recalling that h(0) = A’'(0) = 0. The center manifold theorem
predicts the existence of curves invariant under the flow and tangent to z; = 0.
Here x; = h(xs) = 0 for any zo € V N E),, this means that z; = 0 is itself
locally such a center manifold. Now the system on z; = h(z2) = 0 becomes
Ty = —azw3 which implies that (0, 0) is unstable on E),. Since we are interested
in initial conditions of the form (z,(0),0), z,(0) > 0, the system starting from
such a point is attracted finally by (0,0), although (0,0) is unstable (see the
arrows in Figure (3)). Therefore in this sense this equilibrium point can be
considered to be an attracting point. The phase portrait of the system is
sketched in Figure (3), the trajectories are tangent to the vector field.

Other stationary points. We now consider the stationary points different
from (0, 0).

As regards the point (0, 1 —c3) we have that for ¢; > 1, this stationary point is
not positive so it is not of interest to us. For ¢3 = 1 we have that the eigenvalues
of the Jacobian matrix of the system are \; = —cy < 0 and Ay = 0, (taking
a; = 1). In this case the equilibrium point is (0,0) and it has been analyzed
above.

When c3 < 1 then the eigenvalues of Jacobian matrix of the system are \; =
—cy+ (1 —¢3) < 0and Ay = az(cz — 1) < 0, hence this point is asymptotically
stable provided that c; +c¢3 > 1. If ¢ + ¢3 < 1 then A; > 0 and this point
becomes unstable. For ¢; + c3 = 1 we have A\; = 0; again we apply a center
manifold analysis. The matrix of the linear approximation of the system is:

0 0
JF(O, 1-— 03) = y
az(cs3 —1)  az(cg—1)
with Ay = 0 and \; = —azcy < 0. The eigenspace which corresponds to A;

is By, = {(0,23) : 2 € R} and the eigenspace corresponding to A, is F), =
{(z1, —mz1) : 1 € R}. We apply the transformation x = 21 and y = x1+x9—c5.
In this way we transfer the equilibrium point, (0,1 —¢3) = (0, ¢), at the origin
(0,0) and linear manifold Ey, = E), + ¢, at the z axis. This transformation
has been done since we want, for simplicity, to find a center manifold tangent
for E,. Then the system (8)-(10) becomes:

dx

o= (a1 — ag)ry — ayx(c3 — x3), (13)
d

d—i{ = —azcyy + (ay — az)ry — asy’. (14)



We seek a function of the form y = h(z), h : Ey, — E,, and h(z) = Az? +
Bz? + O(Jz|Y), in a region of (0,0) with h(0) = A/(0) = 0. By the relation
y = h'(x)z& and the system (13) we deduce that h(x) = 0. Then the stability
of the system (8)-(10) at the stationary point can be deduced by the equation
i = —ayx?. Therefore the point (0, 1 — ¢3)is unstable but for initial conditions
of the form (z1(0),0), z1(0) > 0, it is an attractor in the sense that we have a
situation similar to the one demonstrated in Figure (3).

Looking now at the point (1 — ¢ — ¢3,¢3) we have that the eigenvalues of the
Jacobian are A\; = ¢o +¢3 — 1 and Ay = (¢2 + ¢3 — 1)as — coa3. We assume
c2 + ¢3 < 1 (otherwise this stationary point is not positive) and we get that
both the eigenvalues are negative, so this point is asymptotically stable.

Finally for the point (“i&’?&i‘z(fg)l”, “ﬁt’;ﬁgl)), we have the first coor-

dinate of this being — 4 times the second coordinate. Thus this equilibrium
point always has one negative coordinate and it is not of interest to us.
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Fig. 4. Numerical solution of the simpler version of the model. The quantities z;
are plotted against time with the unit in the time axes representing a period of
one month. Values that were used are a1 = 1, as = 0.36, ag = 0.01, co = 2.8531,
cs = 1.4266.

Using the first choice of £’s, estimated in the beginning of this section, we
have that a; = 1, ay = 0.36, a3 = 0.01, ¢ = 2.8531, c3 = 1.4266. We can
solve the system numerically by using a Runge-Kutta method. Results of a
numerical simulation are demonstrated in Figure (4). We see that x, attains
its maximum at the time where xy ~ x3 and then decays exponentially. The
time of the decay depends upon the constants c¢3 and ¢, expressing availability
in rehousing. For the second estimation for the k’s the problem can be treated
similarly.

Asymptotic analysis. Motivated by the form of the numerical solution and
the relative sizes of the a’s (a3 < a; and a3 < ay ) we seek an asymptotic



solution. We see that initially we have a rapid change for time of order one.
More precisely writing a3 = ea; we have € ~ 0.01 and the system (8)-(10)

becomes:
dx
—1 = —all'l(CQ — 1'2) — 021'1(63 — 1'3),
dr
da:Q
dr —Clla?l(CQ — 372) — 6@11’2(03 — £U3),

ZUI(O) =1= 371(7_) + 372(7') + ZU3(7').
Looking at terms of order one we have:

—— ~ —Q1T1\C2 — T2) — A2X1\C3 — T
dr 141162 2 241\C3 3)
dl‘z ( )

—— ~YA1T1\Co — Tg).

dr 141162 2

Also from equation (3) we obtain the equation for x3:

dz
d—7'3 = CLQQfl(Cg — 373) + 613372(03 — 373).

Looking again at terms of order one we have

dafg
— ~ ayzi(c3 — x3).

dr

Combining equations (19) and (21) we obtain the relation:

Ty T3
~ , T 0 =T 0 = 0
a1(02 - 352) 02(03 —xa) 2( ) 3( )

which implies that

a2 aj

Ty Cy |1 — 3t (c3 — a3)°2 |, z9(0) = 0,

a1

(20)

(22)

(23)

or equivalently co — 29 = D(c3 —1'3)$, with D = ¢y/c3?. Now setting co —xo =

y the system of equations (18), (19) becomes

dxl az _a2
ar ~—a 1y — apDyziyer, Dy =D «,

d

—yw—axy
dr Lo

Combining these two equations we have

10

(24)

(25)

(26)



and on integrating we get

T~y + Ayer + B, (27)

a2
where A = (Z—f)le and B =1— ¢y, — Acy' . Using this relation together with
equation (25) we obtain

dy 2 241
e 2 Ay B 28
o y yoL Y, (28)

and integrating we have

y(7) 1
T ~ / ] ds. (29)
¢ —g2— Asei ' — Bs

Therefore the initial system of equations is reduced to the single ode (28). In
terms of zo this is written as

dz 22
2 (er = 1) { B+ Ales — a)1 | (30)

For ¢s > 1(0), i.e. for enough availability in temporary accommodation, we
have that x5, solving equation (30), tends to a steady - state, which are the
root of equation ¢y, + B — x5 + A(co — xQ)Z_f = 0 (note that for B < 0 this
root is the intersection of the straight line ¢; + B — x5 = 0 and the curve

(cg — ZUg)ﬁ = 0). We denote this steady - state by x}.

From the following analysis we conclude that for O(1) times the increase of
xo is related to the increase of x3 by equation (23). Also z; approaches zero
when y = ¢ — x9 attains its minimum (maximum of z,), and this happens
when y = ¢ — 3. This time can be estimated by equation (29).

Looking now at later times, of order O() we need a change of the time scale
by O(%), so er = s. Then the system of equations becomes:

dz a a

B~ e mle —m) = En(e — o), 3y
dz a

2~ (e — ) — g (e — ). (32)

The right hand side of equation (31) and the first term of the right hand side
of equation (32) are of the same size and of order L. This indicates that we
should have x; ~ 0 and then the system becomes:

11



dl‘z

% ~ —031'2(03 - .'L'3), (33)
dx

d—; ~ CL31‘2(03 - 1‘3), (34)
with Ty 0 and To + Ty ~ 1. (35)

The solution of this system is
ra(s) = (e3 — 1) [Agles — 1)ems(sDs 1] 7, (36)

with z3(s) = 1 — x2(s). We see that xo decays exponentially to zero while x3
is increasing. All quantities move to the steady - state (z1,x9,z3) = (0,0, 1).

The parameter Ay should be determined by a matching condition with the
solution given by equation (30). We want for s — 0 the solution of equation
(36) to match with z3 so that we obtain

1 1
A0:—+

Ty g —1

Then the full asymptotic solution can be written as

zo(7) = 2 + 25" — 2}, (37)

where xi" is given by equation (30) and z5* is given by equation (36).
Conclusion: The final result of the above analysis is that we have a respectable
amount of families living in temporary accommodation for a long time, i.e.
some years after the earthquake. This is in agreement with the real situation
in Athens where still quite a lot of families are living in prefabricated houses
three years after the earthquake of September 1999. It is estimated that in
Athens about 10,000 families are still living in temporary accommodation
(prefabricated houses) three years after the earthquake.

Now we consider the situation where a; > ay and a; > a3. In such a case the
pair of equations (8) and (9) becomes

dl‘l

—— = —m1(ey — 1) — ear@(cy — @), (38)

dl‘z . S

E —a1$1(02 - $2) — € a1x2(03 - $3)a (39)
21(0) =1 = 21(7) + z2(7) + 23(7), (40)

where here €a; = ay, § = az/ay, and € is small while § is of order one.

For € < 1 the system becomes

12



dl‘l

E = —all'l(CQ — 1'2), (41)
% = 011'1(02 — 1'2), (42)
21(0) =1 = 21(7) + z2(7) + 23(7). (43)

This means that x3 ~ O(e) and that x; ~ 1 — 5. Then the equation for x;
becomes

dry

dr = —alxl(CQ —1 + ZUl), ZL‘Z(O) = 1, (44)

which has solution

Cy — 1
Czeal(CQ—l)T _ 1

(45)

Iy =

For 7 large this gives 1 ~ O(e) while o ~ z1(0) = 1.

For larger times, i.e when 7 ~ O(1/€) we need a change in the time scale so
that e = s. Applying this to equations (8) and (9) we obtain

dx a

d—sl = —?1331(02 — Iy) — a1x1(c3 — x3), (46)

dx a

d—; = ?lajl(CQ — 372) — 6@1272(03 - 373), (47)
ZUI(O):l :afl(’/') +$2(7—). (48)

For zs being bounded we need z; ~ 0 and this implies for the system

dl‘z

P —da (e — x3), (49)

% =da112(c3 — x3), (50)
21(0) =1 = 25(7) + 23(7). (51)

Therefore z1(0) = xo(7) + x3(7) and the system is reduced to the single equa-
tion
dx
d—; = —5a1x2(03 -1+ 372). (52)

This has solution

63—]_

(Ap(cs — 1) + D)erm(eoDs — 1° (53)

To =

Now for s — 0 we need this solution to match with the one given by (45). This

13



implies that we must have z;(0) ~ ALO. Then the full solution of the system
for all times is

Co — 1 C3 — 1
- + - .
0260,1(02 71 _ 1 A0(03 _ ZUI(O) + 1)603(03 z1(0))T _— 1

(54)

Lo ~ —

In this case we initially observe a flow of x; only to temporary accommodation
and only when x, takes its maximum value; for ;1 ~ 0 we observe people
moving to permanent accommodation with a much slower rate. This could
correspond to a situation where, initially, there is financially inability from
the state or from the families on their own to resetlle.

1

T T T T T T T T T
0.8 al>>a3, a2>>a3 4

x2 0.6

0.4

0.2

0.4 al>>a2,a3

Fig. 5. Comparison of the numerical and asymptotic solutions for the model. In the
first of these figures numerical solution of z9 is plotted with the solid line while
asymptotic solution of z9 is plotted with dotted line against time (we see that the
graphs of both solutions coincide). Values that were used are a; = 1, as = 0.36,
asz = 0.01, co = 2.8531, c3 = 1.4266. In the second, again numerical solution of x5 is
plotted with the solid line while asymptotic solution of z is plotted with dotted line
against time but with values a; = 1, as = 0.04, ag = 0.11, ¢ = 0.9986, c3 = 1.4266.

A more sophisticated model considering different categories of temporary ac-
commodation is discussed in the next section.

3 Derivation of a more sophisticated model

We will consider once again three categories of population a) number of fami-
lies that become homeless after the natural disaster (having houses destroyed
or very badly damaged) denoted by W, b) number of families that are accom-
modated in a temporary state; we denote the number of families living in tents
by T'; the number of families living in prefabricated houses or in general, in
house in camp organized by the state by P and the number of families living

14
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Fig. 6. Schematic representation of the model. The boxes represent the categories
in which the population is divided and the arrows the flows between them.

with relatives or friends by F', and c¢) number of families that are resettled de-
noted by R. We assume that the number of homeless families accommodated
in tents will be jointly proportional to W and to the number of available tents
T, — T where T, is the number of tents available in stock by the state. Simi-
larly, the number of homeless families resettled will be jointly proportional to
W and to R, — R, where R, is the number of houses available. The flow of
homeless families to relatives and friends will be proportional to W. Thus the
rate of decrease of W will be given by the following equation

dw
= ~KW(T, = T) = K,W — KW (R, — R), (55)

where K; and Ky are positive constants of proportionality.

The rate of change of number of families living in tents will be proportional
to W(T, — T), to the number of families that they are resettled T'(R, — R)
and to the number of families that are accommodated in prefabricated houses
T(P, — P). Therefore we have

dT
% :KIW(T(L_T) —K5T(RG—R) _K3T(PQ_P)7 (56)
where K3 and K35 are positive constants of proportionality. Similarly for the

rate of change of number of families living in prefabricated houses we have

P
7 = KT(P, — P) — K,P(R, — R). (57)

For the number of families accommodated in relative’s or friend’s house we
have in a similar way
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dF
—r = ~KF(Ry — R) + Ko W. (58)

Finally, for families resettled we have

dR
— = (KuP + KT + KoF + K:W) (R, — R). (59)

The symbols K4, Kg and K7 are positive constant of proportionality. We as-
sume also that the population remains constant during this process therefore,

Wo=W(0) =W(t)+ R(t) + P(t) + T(t) + F(t). (60)

Using equation (60) we can eliminate equation (59) so that a system of four
ode’s and an algebraic one is formed:

dw

— = —K\W(T, = T) ~ Ky — K:WW (R, — R), (61)
‘;_f = K\W(T, - T) — KsT(R, — R) — K;sT(P, — P), (62)
‘Z_]; = K3T(P, — P) — K,P(R, — R), (63)
C;—f — KF(Ro — R) + KW, (64)
Wo=W(0)=W(t)+ R+ Pt)+T{) + Ft), (65)

with initial conditions W (0) = W, R(0) = P(0) = T(0) = F(0) = 0.

The derivation of this model is based on the same assumptions as in Section
2. Note also that the rate between F' and P is taken to be negligible as well
as the rate between W and P. The former, because of the data of the census
about the earthquake, indicates that we have only a very small amount of
families hosted by friends or relatives wanted to move to a camp organized
by the state. The latter because people moving to organized accommodation
had been living in a non-organized, temporary accommodation (in their own
tents, hotels etc.).

We can apply the same method as in Section 2 to estimate the coefficients
of the system. Note that in order to have agreement with the simpler model
we must have K; = ky and the coefficients K; and K, can be calculated by
considering the flow at time ¢ = 0 from W to F' and T should be

—K\T, — Ko = —K1Qq,
while at time t = ¢, is

_Kl(Ta - Ts) - K2 = _Kl(Qa - Qs)
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Therefore by solving this linear system of equations, having 75 = 38,031
families and T, taken to be T, = 150,000 units of temporary accommodation,
we have an estimate for these values: K; = 294 x 1075 per families and per
year and Ky = 29 per families and per year. Now we consider a function
G(K3, Ky, Ky, Kg) = (W(ts) =Wy, P(ts) — Ps, F(ts) — Fs, T(ts) —Ts). Finding
the zeros of this function gives an estimate of the values of K's. We have
P, = 5,528, T, = 13,062, F, = 19,008 while we take P, = 50,000 available
units of temporary accommodation. Solving numerically this equation we find
that K3 ~ .6 x 107> per families per year, K, ~ 2.77 x 107> per families per
year, K5 ~ 4.22 x 107° per families per year, and Kz ~ 94.94 x 10~° per
families per year.

Analysis of stability and numerical solution of the model. Now we
scale quantities regarding number of families with the initial number of home-
less families Wy so that W = Wy, T = 2. Wy, P = x3Wy, F = x,W,,
R = z5W,. Also we scale as time the time that the system needs so that W
becomes negligible, ¢y = ﬁwo and we have t = 7ty. Therefore the system of
equations (61)-(65) becomes:

dz
d—rl =—a121(Ce — T9) — asx1 — arxy(c; — T5), (66)
dl‘z
E = Clla?l(CQ — 372) — a5x2(c5 — 375) — ClglUg(Cg — £U3), (67)
dx
d—: =azra(cs — x3) — ayx3(cs — x5), (68)
dx
d—: = —615274(05 — 375) + asxq, (69)
1=21(0) = 21 (1) + 22(7) + 23(7) + 24(7) + 25(7). (70)
Where now the a;’s are a; = %, 1=1,3,4,5,as = %;,0, Cy = VTV—“O, c3 = VI[D,—‘; and
Cy — ‘I/t;/—‘;.

The system is solved numerically using a Runge-Kutta method and the results
are demonstrated in Figure (7).

We can see here that z; tends to zero while at the same time z; and x»
attain their maximum value. The number of families in prefabricated houses,
represented by x3, remains very small during this process. After a long period
of time we find that the majority of the population is resettled while the rest
of it is still accommodated in relatives houses (x4 continuing to be significant).

The solution of the system of algebraic equations coming from equating the
right-hand side of (66) - (69) to zero and (70) will give the steady - states of the
system. One steady - state is 1 = x9 = x3 = x4 = 0 which is of interest in our
analysis because it expresses the state when every family is resettled. Other
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Fig. 7. Numerical solution of the model. The z’s are plotted against time. Unit in
the time axes represent a period of one month. Values that were used are a; = 294.1,
as = 118, a3 = 0.8056, a4 = 0.8801, a5 = 0.7179, ag = 0.6450, co = 0.4531, c3 = 1.4,
cs = 1.4266.

steady - states can be analyzed as regards their stability in a similar way. The
parameter cs is crucial for the stability of the system at the origin. For c¢5 > 1
all the eigenvalues of the Jacobian matrix of the system are negative and the
point is asymptotically stable while for ¢5 < 1 we obtain positive eigenvalues
and the system is unstable.

If we take the Jacobian of the system we have for the zero solution, when
¢s = 1 that

—Qy — Q7 — Q1C 0 0 0
ac —asc 0 0
JF(0,0) = 1C2 3C3
0 —ascCs —ay 0
as 0 0 0
The eigenvalues of the system are \; = —agzcs, \a = —a4, \3 = —ay — a1¢o

and Ay = 0. We see that the system attains the zero eigenvalue when c; =1
with multiplicity 1 and the other three eigenvalues are negative, but starting
with initial condition (z; =1, 9 = x3 = x4 = 0) the zero point should be an
attracting point, therefore further analysis is needed.

Center manifold analysis. We proceed again by using the theory of center
manifolds. The eigenspace which corresponds to the zero eigenvalue \4 is R =
{(0,0,0,74) € R* : x4 € R} i.e. the 24 axis in R*. For the stability of (0, 0,0, 0)
we find a center manifold W, = {(z, v9, 23, 74) € R* : 7; = hi(x4), i =1,2,3}
where h = (hy, hy, hs) with b : R® — R¥ = R @ R®® R, § = (s1, 52, 53) and
R‘®@R* = R*. The form of h; is h;(z4) = A;izi+Biz3+O0(|z4|*), i = 1,2, 3, with
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h(0) = 1'(0). We differentiate the relations ; = h;(x4) and by using equations
(66) - (69) and the form of h; we obtain that z; = h;(z4) = 0+ O(|z4]*).
Therefore substituting in equation these expressions in (69) we get that i, =
—agx?. Hence the origin is unstable. Although for positive initial conditions,
as it is in the case that we are interested in, we have that the origin is an
attractor.

4 Possible improvements of the models

The models demonstrated in the previous sections are based upon the assump-
tion that availability in accommodation (e.g. P,, T,) is a constant. This means
that initially there is a sufficient number of tents or accommodation in an or-
ganized camp and prefabricated houses supplied by the welfare state according
to demand. A more realistic approach would be to have these quantities i.e.
P,, T,, R, as functions of time and to assume for example that P, = P,+ pt for
t; <t < ty and zero elsewhere. This would express the fact that prefabricated
houses are supplied after some time of the disaster e.g. a couple of months
with a constant rate only for some period ¢ — ¢;. This modification would
make the system of equations of the model non-autonomous and we should
consider in such a case the time scales of the system more carefully as regards
its stability and asymptotic behaviour.

Another modification would be to consider the time that families need to
settle in a temporary accommodation or to resettle as far as such a possibility
is available for a family. This would lead to a system of delay equations.

Finally in order to be more precise as regards the determination of the co-
efficients and the initial conditions of the model we could consider these as
random variables following some distribution, estimated by available data in
each case, and come out with a system of stochastic differential equations.

5 Discussion

Two models were derived regarding the movement of a homeless population
after a natural disaster. In the second of these, the number of families in tem-
porary accommodation is divided into three categories while in the first model
it is taken to be one category. In both cases we analyze the stability of the
system of derived ordinary differential equations. We find the steady - states
of the system and we look at the zero solutions because we are interested in
the state of the system where every family is resettled. With the initial condi-
tions that we pose the origin is attracting but the presence of zero eigenvalue,
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when availability is equal to the demand for accommodation (c3 = 1 for the
simple version of the model or ¢5 = 1 for the more sophisticated version of the
model), the Jacobian of the system for this steady - state indicates that more
analysis is needed in order to be able to see the behaviour of the system with
positive initial conditions. Also an asymptotic solution of the system is given
for the first model based on the dominant flows of it. The models are solved
numerically using a Runge - Kutta scheme and the results are analyzed.

All the numerical estimates in our analysis are based on data taken from the
census of the earthquake in Athens in September 1999. It would be interesting
to test the results of this model with data taken from other cases of homeless
populations of a natural disaster of the coefficients easier and more accurate
and the role of the welfare state. This could also make the determination of the
coefficients. Also possible improvements of the model are suggested in order
to make it more realistic.
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