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Abstract

It is shown that for compact metric spaces (X,d) the following
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it is shown that the statement: Compact metric spaces are weakly Loeb
is not provable in ZF?, the Zermelo - Fraenkel set theory without the
axiom of regularity, and that the countable axiom of choice for families
of finite sets CACy;, does not imply the statement Compact metric
spaces are separable.
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1 Definitions and introduction

In the Zermelo-Fraenkel set theory with the axiom of choice ZFC a compact
metric space is always separable. Without AC this result is not valid, see [4]
and [8]. This paper is a continuation of the study of Lindeldf metric spaces
having properties like separability, second countability etc and which was
initiated in [8]. This time we consider the following notion of a Loeb space
introduced by N. Brunner [1]: Let (X,d) be a metric space. Then X is a
Loeb (weakly Loeb) space if there is a choice (multiple choice) function on
the family of its non empty closed subsets.

Next we list the statements and choice principles we are going to use in
this paper.

1. The aziom of choice AC (Form 1 in [5]) : For every family A = {A; :
i € I} of pairwise disjoint non empty sets there exists a set C = {¢; :
i € I} such that ¢; € A; for all i € I.

2. The countable axiom of choice CAC (Form 8 in [5]) : AC restricted to
countable families of sets.

3. CACyyy, (Form 10 in [5]) : CAC restricted to countable families of finite
sets.

4. The aziom of multiple choice MC (Form 67 in [5]) : For every family
A ={A; i €I} of pairwise disjoint non empty sets there exists a set
F = {F; :i € I} of finite non empty sets such that F; C A; for all
1€ 1.

5. The countable axziom of multiple choice CMC (Form 126 in [5]) : MC
restricted to countable families of sets.

6. Form 131 in [5] : For every family A = {A; : i € w} of pairwise disjoint
non-empty sets, there is a function f such that for each i € w, f(4A;)
s a non-empty countable subset of A,.

7. Form 9 in [5] : Every infinite set has a countably infinite subset.

8. Form 154 in [5] : The countable Tychonoff product of compact T4 topo-
logical spaces is compact.



9. Form 343 in [5] : A product of non-empty compact Ty topological spaces
18 non-empty.

10. (D) : Every compact dense-in-itself metric space (X, d) has a dense set
G =U{G, :n € w}, |G| < w and 6, = Diameter(G,) — 0.

11. CMWS : Every compact metric space (X, d) has a dense subset D which
can be written as a well ordered union of finite sets.

12. (®) : Every compact metric space (X, d) can be written as a well ordered
union of finite sets.

13. (&) : Bvery infinite compact dense-in-itself metric space (X,d) can be
written as an well ordered union of compact nowhere dense sets.

14. (W) : Every infinite compact metric space has an infinite well orderable
subset.

Before we proceed let us list a couple of results which we are going to use
in the sequel.

Lemma 1.1 /8] (i) CMSC: Compact metric spaces are second countable iff
CMWOB: Compact metric spaces have a well ordered base.
(it) CMWOB (and consequently CMSC) implies CACl;p,.

A separable compact metric space (X, d) has size < 2% (If G = {g, : n €
w} is a dense subset of X, then the mapping z — V, ={V € V:x € V},
where V = {D(g,,1/m) = {x € X : d(gn,x) < 1/m}:m € w" =w\l,n €
w} is 1:1 and |V| = w. Hence, |X| < |2¥]). Since in permutation models 2%
can be well ordered (see [5]), it follows that in such models, the statement

e CMS : Compact metric spaces are separable
is equivalent to the assertion
e CMWO : Compact metric spaces are well orderable.

Clearly CMS and CMWO imply (W). We show in theorem 3.6 that (W)
holds in the model N described in theorem 3.5 but CMWO fails in N/. Thus,
(W) does not imply back CMS. In general, CMWO implies CMS (see the
proof of theorem 2.1 (ii)—(iii)) but the converse fails. Indeed, in Feferman’s
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model (see [3] and model M2 of [5]) CAC, hence CMS (see [4] and [8]), is
true and the unit interval [0, 1] is a separable compact metric space which is
not well orderable. Thus, CMWO fails in M2. We show in theorem 2.1 that
the following weaker version of CMWO

e CMWOD : Compact metric spaces have a well ordered dense subset
is equivalent to each one of the statements: CMS and

e CML : Compact metric spaces are Loeb.

In Section 2 we also study the statement

e CMWL : Compact metric spaces are weakly Loeb.

In Theorems 3.5 and 3.6 we shall be concerned with the questions:

1. Is CMWL provable in ZF°?
2. Does Form 9 imply Form 1547
3. Does CACy;, imply Form 1547

4. Does Form 9 imply Form 1317

The status of 2., 3. and 4. is indicated as “unknown” in table 1 of [5]. We
shall prove that the answer to all of them is in the negative.

We would like to point out here that being a metric space Loeb (weakly
Loeb) is actually equivalent to AC (MC). Indeed, any set A with the discrete
metric is a space in which every subset X of A is closed. Therefore the pow-
erset P(A) of A has a choice function (a multiple choice function) meaning
that A is well orderable (A can be written as a well ordered union of finite
sets). The conclusion now follows from the well known results:

(A) [13] AC iff every set can be well ordered, and

(B) Levy’s Lemma [10], MC iff every set can be written as a well ordered
union of finite sets

respectively.



2 Main results
We begin with a list of characterizations of CML.

Theorem 2.1 The following are equivalent: (i) CML.
(ii) CMWOD.

(iii) CMS.

(iv) CMSC.

Proof. (i) — (ii). Fix (X,d) a metric space and let f be a choice function
of the family G of all closed subsets of X. We construct recursively a dense
set D = {d, : n € X} such that for all m € X, B,, = {d,, : n < m} is not
dense in X. For n = 0 put dy = f(X). For n = v + 1, a non limit ordinal,
and for k € w™, let Uy, = U{D(d;,1/k) : j < v}. If each Uy = X, then B,
is a well ordered dense subset of X and the induction terminates. (If B, is
not dense then there exists an open disk D(z,r),r > 0 avoiding B,. Thus,
d(d;,x) > r/2 for all j < v and consequently U, » # X).

Let k,, be the first £ with Uy # X and put d,, = f(X\Uy,).

For n a limit ordinal we define Uy as in the non limit case. Again, if
each U, = X, then B, is a well ordered dense subset of X and the induction
terminates. Otherwise we let k, be the first & with U, # X and put d,, =
F(X\Uk,).

The induction surely terminates at some ordinal stage finishing the proof
of (i)—(ii).

(ii)—(iii). Fix (X, p) a compact metric space and let G = {g; : i € R} be
a well ordered dense set of X. Then the collection

B ={D(g;,1/n) :i € X,n € w'} forms a well ordered base for the metric
topology T, on X. Now following the proof of Lemma 1.1(i) (this paper)
given in [8] we can find a countable subcollection C of B which is a base for
T,. As each element of C is a disc we can pick its center and thus obtain a
countable dense set of X.

(iii)—(iv). This is straightforward.

(iv)—(i). Fix (X,d) a compact metric space and let B = {B,, : n € w}
be a base for X. Here is how we choose from closed sets. Fix G a closed set.
Via a straightforward induction choose a nested sequence Q¢ = {¢, : n € w}
from B such that:

(A) G,41 C gy for all n € w and lim diameter(g,) = 0 and,

(B) each member of Q)¢ meets G non trivially.
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It is easily seen that N{g, NG : n € w} is a singleton of G. For every closed
set G, choose the unique element of N{g, NG : n € w}. |

Corollary 2.2 (i) CML implies (W ).
(i) Compact separable metric spaces are examples of Loeb spaces.

(1ii) (W) implies CACyy,.

Proof. (i), (ii). These follow immediately from theorem 2.1.
(iii). Fix a disjoint family A = {A,, : n € w} of non empty finite sets. Let
X =JAU{o0},00 ¢ |JA. Define a function d : X x X — R by requiring:

Oifr=y
d(z,y) = d(y,z) = max{n%rl,m%rl} ifreA,,yec A, andz #vy .

n}rl ifx € A, and y = oc.

Clearly d is a metric on X and (X,d) is a compact metric space. Let
W = {w; : i € p}, pis an infinite ordinal number, be the well ordered
subset of X guarranteed by (W). Via a straightforward induction we can
define an infinite subfamily B of A having a choice set. Since CACy;, is
equivalent (see [14]) to the choice form PCACy;,: Every countable disjoint
family of non-empty finite sets has an infinite subfamily with a choice set,
it follows that (W) implies CACy;, as required. 1

Remark. We would like to point out here that CMS is equivalent to the
statement CDMS ( : Compact dense-in-itself metric spaces are separable).
Clearly CMS implies CDMS. To see the converse fix a compact metric space
(X,d) and let Y = X x 2¥ be the Tychonoff product of the spaces (X, d)
and (2¥, p), where p is the metric on 2¥ defined by p(f,9) = > .., ‘f(;);‘f(i)‘
for all f,g € 2¢. Then Y is a compact dense-in-itself metrizable space (2¢ is
compact and this without use of any choice principle, see [2]). Thus, Y has
a countable dense subset G = {g, = (pn,qn) : 1 € w}. It is easy to see that
P ={p, : n € w} is a countable dense subset of (X, d) as required.

Next we find another characterization of CMS. A compact metric space
(X, d) is separable in case it satisfies the conclusion of (D) and conversely.
Even though it is easier to check directly separability than (D), we include
this characterization here in order to stress out the resemblance and the
differences between CML and CMWL respectively.

Theorem 2.3 (D) can be added to the list of theorem 2.1.
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Proof. CMS — (D). This is straightforward.

CMS « (D). It suffices, in view of the latter remark, to show that (D)
— CDMS. Fix a compact dense-in-itself metric space (X, d) and let G be the
dense set of the statement (D). We describe how to choose an element from
a closed proper subset A of X. We consider two cases:

(A). ANG # (). Let ng be the least integer n such that AN G, # 0.
Suppose that AN Gy = {g1,...,9x}. Put r = min{d(g;,9;) : 1 < i,j <
k,i # j} and let n; be the least integer n such that G, intersects only one
open disk D(g;,r/3). (Notice that for each i < k since D(g;,7/3)\{g:} is
an open non-empty (actually infinite) set, there is a G,,n # ng, such that
G, meets D(g;,7/3). Now suppose that for each n # ny G, meets more
than one disk D(g;,r/3). Since diameter(G,) — 0, there is a G,,n # ny
with diameter(G,) < r/3. Without loss of generality assume that G, meets
D(g1,7/3), D(ga,7/3) in x,y respectively. Then we have that d(gi,g2) <
d(gy,r) +d(x,y) +d(y, g2) < 3% = r, a contradiction). Then we may choose
the center of this disk.

(B). ANG = 0. We will construct inductively a nested sequence {A,, :
n € w} of non empty closed subsets of A, a sequence (r,,),e, of positive real
numbers converging to 0 and a sequence Q = {@,, : n € w} such that:

Vn € w,Vq, g € Qn,rn = inf{d(q,z) : x € A,} = inf{d(g,x) : 2 € A,} <
Tno1/2

A =U{B,={a€ A, :d(a,q) =rns1} : ¢ € Qn}.

Forn=0welet Ay = A,ry =d(A,Gy) and Qy = {g € Gy : d(A, g) =1¢}.

Assume that {4, : n < k},{r, : n < k} and {Q,, : n < k} have been
constructed.

For n =k + 1 let P be the first element of {G,, : n € w} with

0 < r, =d(Ag, P) < /2 and diameter(P) < ry.

Such a P exists because G is dense in X and liTan diameter(G,) = 0. (As-

sume on the contrary that for all n € w, d(Ay, Gy) > /2. Let € Ay and
D(x,r/2) be the open ball of radius ri/2 centered at x. Then D(z,r/2) N
G = (), contradicting the fact that G is dense. Now let K = {P € {G,, :n €
w}:d(Ag, P) < rt/2}. K is infinite. Otherwise, let K = {G,,,, Gp,, ..., G, }
and r = min{d(Ag, Gp,) : 1 < i <k}. Thenifz € Ay, D(z,7)NG =0, a con-
tradiction. Since diameter(G,) — 0, we have that (diameter(P))pex — 0.
Therefore there exists P € K such that diameter(P) < r;). Put

Qn ={p € P :d(Agp) =r,} and let A, = U{B, = {a € Ay : d(a,q) =
rn} i q € Qn}. Since Ay is closed (thus compact) it follows that A, being



a finite union of non empty closed sets, is a non empty closed subset of X,
terminating the induction.

Claim. For every n € w™, diameter(A,) < 2r,_1.

Proof of the claim. Fix x,y € A,. From the construction of A, it follows
that there exist p, ¢ € @, such that x € B(p,r,) (the closed ball of radius 7,
centered at p) and y € B(q, r,). We have: d(x,y) < d(z,p)+d(p,q)+d(q,y) <
(rn_1/2) + ro—1 + (rn_1/2) = 2r,_1 as required.

As 6, = diameter(A,) — 0, it follows by the compactness of X that
Ly = n{4, : n € w'} is a singleton of A. Choose from A this unique
element of L,. |

Theorem 2.4 (i) CMWL implies CMWS.
(ii)) CMWL implies every compact metric space has a base which can be
written as a countable union of finite sets.

wwi) CMWL+CACY;, iff CMSC.
f

Proof. (i). This is a straightforward consequence of theorem 2.1.

(ii). Fix (X, d) a compact metric space, then, by CMWL, let D = U{D; :
i € N}, 0 < |D;| < w, be dense in X. For each n € w* define U/, = {O; =
U{D(z,1/n) : x € D;} : i € N}. Clearly Uy, is an open cover of the compact
space X. Let m, = min{m € w : 3V, V is a subcover of Uy, of size m}.
Since [R]™ (the set of all subsets of N having size m,,) is well ordered and
S={Aec X :{0;:iec A} is a subcover of U/, } # 0,
we may put
Ap, =min(S) and Vi), = {D(z,1/n) 1z € D;, i € Ay, }
Clearly Vi, is a finite set and V = U{V,, : n € w™} is a base for the metric
topology Tjy.

(iii). This follows from (ii) and the fact that CACy;, implies the union of
countably many finite sets is countable (see [5]). I

In [7], lemma 2, it has been established that: CMC iff every compact
pseudometric space (X,d) has a dense subspace Y which is written as a
countable union of finite sets. As the proof of (—) goes through with metric
in place of pseudometric, it follows that CMC implies: Fvery compact metric
space (X,d) has a dense subspace Y which is written as a countable union
of finite sets.
Thus, CMC implies CMWS.



Theorem 2.5 Form 15/ implies statement (W).

Proof. Fix (X,d) an infinite compact metric space. Clearly the Tychonoff
product X“ is metrizable and by 154 X“ is compact. Since X is an infinite
compact space it has at least one accumulation point z. Let V, = {V,, : n €
w} be an open neighborhood base of x. We construct by induction a strictly
decreasing subfamily {V},. : i € w} of V, such that

Vi € w, Vo, \Vniyy # 0.

For s =0 put V,,, = W.

Assume that V;,;, i € k+1, have been constructed. Let n, be the least in-
teger n such that D(x,1/n) C V,,, . Since x is an accumulation point, there is
an element y € X such that y € D(x,1/n,)\{z}. Putr = min{ﬁ, d(z,y)}
and let ny.1 be the least n such that V,, C D(z,r). Clearly V, \Vi,,, # 0.
The induction terminates.

For each i € w, define A; = HjeHl(Wj\VnHl) x XN+ Now A = {A4; :
i € w} is a descending family of non empty closed sets in X“, thus by the
compactness of X%, NA # (). Tt is straightforward to verify that any z € NA
yields a countably infinite subset of X. |

3 Models

Theorem 3.1 (i) CML is not provable in ZF°.

(11) CMC and statement P, P € {CML, (D), (W)}, are mutually independent.
(11i)) CMWL does not imply either of CML, CMC.

(iv) Q@ € {CML, CMWO, (D), (W)} does not imply form 9.

(v) (W) does not imply either of CAC, CMWO.

Proof. (i), (ii), (iii). In the second Fraenkel model A2 in [5] MC, and
consequently CMC and CMWL, is true whereas CACy;, is false. Therefore
by theorem 2.1 and corollary 2.2 each statement P fails in N2. Now in
the basic Fraenkel model N1 in [5] CMSC is true (theorem 3.2 in [8]) and
consequently by theorem 2.1 and corollary 2.2 each statement P and CMWL
(CML clearly implies CMWL) are true in N'1. However CMC fails in N'1
meaning that P and CMWL do not imply CMC.

(iv). Form 9 fails in the basic Fraenkel model (see [5]) while @ is true.

(v). In the basic Cohen model M1 in [5] form 154 is true (see [5]),
therefore by theorem 2.5, (W) is true in M1. On the other hand CAC is



false in M1 and [0, 1] is a compact metric space which is not well orderable

in M1. |

Theorem 3.2 (i) (®) implies Form 79 in [5]: R can be well ordered.
(11) (£) implies Form 170 in [5]: ®; < |R|.

Proof. (i). The unit interval [0, 1] with the usual metric is a compact metric
space. Thus, by () [0, 1] can be expressed as a well ordered union of finite
sets, say U{F; : i € R}. Then as each F; with the usual ordering is well
ordered it follows that [0, 1], hence R, being the well ordered union of well
ordered sets is well ordered.

(ii). Let [0,1] = U{F; : i € X} with each F; a closed nowhere dense subset
of [0,1]. As [0,1] is a second countable metric space, it follows that ¥; < N.
Furthermore, as the family of all closed sets of R has size 2%, it follows that
R has a subset of size ¥; finishing the proof of the theorem. |

Lemma 3.3 CMWL does not imply (£), hence also (@), in ZF.

Proof. In Shelah’s Model II, see [15] and model M38 of [5], CAC, hence
CMWL holds but 170 fails. Thus, (£) fails also. I
Strangely enough CMWL implies (4) in all permutation models.

Theorem 3.4 In all permutation models CMWS implies (£).

Proof. Let A be a permutation model and let (X, d) be a compact dense-
in-itself metric space in N'. By CMWS X has a dense subset G = U{G}; : i €
w}, |Gi| < w. Define a relation ~ on X by requiring:

forall z,y € X, z ~ y iff (Vn € w) d(z,G,) = d(y, G,).
It is straightforward to verify that ~ is an equivalence relation on X.

Claim 1. For each z € X, the equivalence class [z] of z is a closed set.

Proof of claim 1. Fix an element y € X\[z]. Then d(x,G,,) # d(y, G,,) for
some n € w. There are two cases:

(i) d(z,Gy) > d(y,Gy). Then r = d(x,G,) — d(y,G,) > 0 and D(y,r/2) N
[z] = 0. Otherwise let z € D(y,r/2) N [z] and ¢t € G,, such that d(y, G,) =
d(y,t). Then d(z,G,) = d(2,G,) < d(z,1) < d(z,y) + d(y,t) < Q&) 4

D
AsGn) o d@Gn) 4 d@:Gn) — (g, @,). A contradiction.
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(ii) d(z,Gp) < d(y,Gp). Let r =d(z,G,) and U = {z € X : d(z,G,) < r}.
Clearly U is a closed set such that [x] C U and y ¢ U.
Thus, [z] is a closed set finishing the proof of claim 1. I (claim 1)

Claim 2. [z] is a nowhere dense set.

Proof of claim 2. Fix n € w. For each g € G,, define Y, = {y € [z] :
d(y,g) = r}, r = d(z,G,). Since the metric d is a continuous function we
see that Y, is closed. Further, Y, is nowhere dense and [x] = U{Y}, : g € G,,}
(Assume the contrary and let U be a non-empty open set such that U C
Y,. Since X is dense-in-itself, U is infinite. Fix an n* € w and elements
y € UNG, and z € U\G,-. Then d(y,G,-) = 0 < d(z,G,~) meaning
that y ~ z. This contradicts the fact that y,z € [z]). Since a finite union
of nowhere dense sets is a nowhere dense set we conclude that [z] is also
nowhere dense. This completes the proof of claim 2. I (claim 2)

Claim 3. |X/ ~ | < |P(R)|, where X/ ~ is the set of all equivalence classes.

Proof of Claim 3. Define a function f : X/ ~— P(R x w) by requiring for
all z € X, f([z]) = {(r,n) : d(z,Gy) = r}. f is one-to-one (if x ~ y, then
there is an n € w such that d(x, G,) # d(y,Gy). Thus, f([z]) # f([y])). 1
(claim 3)

Since in all permutation models the powerset of R can be well ordered,
we conclude by claim 3 that X/ ~ can be well ordered. This finishes the
proof of the theorem. |

Theorem 3.5 (i) CMWL is not provable in ZF°.
(i) Form 9 does not imply CMWL.
(tit) CACyiy, does not imply either of CMS, CMWS.

Proof. (i) We first give the description of a permutation model V. The set
of atoms A = U{A,, = {an; = (1/n)(cost,sint) : t € [0,27)} : n € wt}. The
group of permutations G is the group of all permutations on A which rotate
the A,,’s by an angle 6,, and supports are finite. It has been shown in [9] that
the family {4, : n € w™} does not have a multiple choice function in N (in
fact, {A, : n € wt} does not have a choice function in N).

Adjoin a point x to A and define a function d* : A(x) x A(x) — R by
requiring:

11



max{1/n,1/m} ifz € A,,y € A, and n #m
p(z,y) if 2,y € A,
I/nifz € A, and y = * ’
Oifx =y =«

d*(z,y) = d*(y,z) =

where p is the Euclidean metric. It can be readily verified that (A(x),d*) is
a compact metric space in N (each (A,,p) is a compact metric space, see
also [9]). We claim that (A(x),d*) is not weakly Loeb. Assume the contrary
and let G = U{G, : n € w},|G,| < w, be the dense set of A(x) which is
guarandeed by theorem 2.4. Since each A,, is an open set, it follows that A,,
meets a G, (actually infinitely many). Let m, be the first n € w such that
Ayn NG, # 0. Then {4, NGy, : m € w'} is a multiple choice set of the
family {4, : n € w™} which is a contradiction. Thus, CMWL fails in .

(ii) Let N be the permutation model defined in (i) and let X be any infi-
nite set in N. If X is well orderable then there is nothing to show. Assume
that X is not well orderable and let E be a support of X. Fix a € X such
that F is not a support of a. For each n € w* and t € [—m, 7| let g,y € G be
the permutation of A which fixes all A,,, m € w™, m # n and rotates A,, by
tie. gnila ):{ amy 1 0 720 .

ey (1/n)(cos(y +t),sin(y +t)) if n =m

Fix n € w' and t € [—m, 7] such that ¢,, € fiz(E) = {n : ©(E) = E
pointwise} and g,;(a) # a. Note that such a pair (n,t) exists because other-
wise E would be a support of a. Let F' be a support of a and D = {g,s(a) :
s € [—m,m]}. It can be readily verified that F'is a support for D. Hence D €
N. Moreover D C X as g,s € fiz(F) and since [—m, 7] is well orderable in
N, it follows that D is well orderable also. We will be done once we show:

Claim. D is infinite.

Proof of the claim. Assume the contrary and let H = {t € [—n, 7] :
gnt(a) = a}. H is a subgroup of the group Q@ = ([—m,n],®) where @ is
addition modulo 27.

()/H is infinite. If not then @)/H has finite order, say k& > 1. Fix an
element ¢ € (Q\ H). Without loss of generality we may assume that 0 < ¢ < 7.
Then, t/k < 7/k and k(t/k) =t/kDt/kD, ..., Bt/k =t/k+t/k+, ..., +t/k =
t. Tt follows that H = ((t/k) ® H)* = k(t/k) ® H = t ® H, where ® denotes
the addition operation on @Q/H. This is a contradiction because ¢t ¢ H. Thus,
)/ H is infinite as required.
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Let ¢, s belong to different cosets of QQ/H. If gn(a) = gns(a), then g, (a) =
a meaning that ¢t — s € H which is a contradiction. Thus, D is an infinite
subset of X finishing the proof of the claim and of (ii).

(iii). Since form 9 implies CACy;,, the latter holds in the model N defined
in (i). Now the proof of (i) applies to show that CMS and CMWS fail in NV I

Theorem 3.6 Let N be the permutation model defined in the proof of theo-
rem 3.5. Then the following hold:

(i) (®), (D) fail in N.

(it) Each statement P € {154, 343} fails in N.

(iii) (£) fails in N.

(iv) (W) holds in N

(v) AC(WO, WO) (the aziom of choice for well ordered families of well or-
derable sets) fails in N .

(vi) Form 131 fails in N .

Proof. (i). The space (A(x),d*) defined in the proof of theorem 3.5(i) is a
compact dense-in-itself metric space in A/ which satisfies none of (@), (D).

(ii). By theorem 3.5 we get that {(A,, p) : n € w™} is a family of compact
metric spaces with empty product. Thus, 343 fails in A. Moreover, 154 is
false in N as otherwise Hnem A,, would be non empty.

(iii). Assume on the contrary that (£) is true in /. Then for the compact
dense-in-itself metric space (A(x),d*) there exists a well ordered family of
compact nowhere dense sets {W; : i € R} such that A(x) = U{W; : i € ®}.
For each n € w™, let 4, be the least ¢+ € N such that A4, N W; # (. Clearly
A, NW;_ is a nowhere dense set and since A, is open, A, NW; C A, (strict
inclusion). To complete the proof it suffices to show that A = {A, "W, :
n € wt} ¢ N. Assume the contrary and let FE be a support for A and
no = max{n € wt : ENA, # 0} (F being a finite set intersects finitely many
Ap’s). Fix m > ng and x,y € A, "W, , x # y. Without loss of generality
we may assume that y is the image of x under a rotation by positive angle.
Let z in the arc 7y, z # z,y and r = min{p(z, 2), p(y, 2), m(n;l), m(ni_l)}.
Then the open disk D(z,7) € A, NW;,.. Let w € D(z,7)\(A,,NW;,,) and 9
be the central angle corresponding to the arc Zw. Consider the permutation
7 on A which is the identity map on each A,,n # m and rotates A,, by 6.
Clearly m € fiz(E) so n(A) = A. But m(A, N W;,) # A, N W, . This
contradiction completes the proof of (iii).

(iv). Since form 9 clearly implies (W) and form 9 holds in N' we have
that (W) is also true in N.
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(v). Each subset A, of the atoms is a well orderable set (if a € A,,, then
fiz({a}) C fizx(A,)) and {A, : n € w"} is a countable family in A/ having
no choice set.

(vi). Assume on the contrary that form 131 holds in A". Then for the
family A = {A, : n € w"} (which is N since it has empty support) there
exists a function f € A such that f(A,) is a non-empty countable subset
of A,. Let E be a support for f and np = max{n € w* : EN A, # 0}.
Fix m > ng and =,y € f(A4,,). Since f(A;,) is a countable set and the arc
Ty has size |R|, there exists a z € Ty\f(An). Let ¥ be the central angle
corresponding to the arc zz. Consider the permutation 7 on A which is the
identity map on each A,,n # m and rotates A,, by 6. Clearly = € fix(F)
sow(f) = f. But 7(f(An)) # f(A;) meaning that f is not a function. This
contradiction completes the proof of (vi) and of the theorem. I

4 Summary

The following diagram presents the results of the paper.

Y 7
CMWO
4 U
— CML = CMS = (D) —
CACI | cMmwoD =cMsC = cpMs | o V)
I ¥ \
CMWL
1
CMWS
T ¥
CMC
Diagram1

The independence results are



9.

. (a) CMWL is not provable in ZF° (Theorem 3.5). Thus, from diagram1

we have that none of the statements CMWO, CML and its equivalents
listed in diagraml are provable in ZF°.

(b) CMWL does not imply either of CML, CMC in ZF°? (Theorem 3.1).
(c) CMWL does not imply either of (£), (@) in ZF (Lemma 3.3).

. CMWS does not imply CMC (Theorem 2.4 and Theorem 3.1).

CAC and CMWO are mutually independent statements (Introduction
and Theorem 3.1).

. CMS and its equivalents listed in diagram1l do not imply CMWO in

ZF (Introduction).

(a) @ € {CML, CMWO, (D), (W)} does not imply form 9 (Theorem
3.1).

(b) Form 9 does not imply the statements CMWL, 154 and 131 (The-
orem 3.5 and Theorem 3.6 respectively). Therefore, from diagraml we
have that form 9 implies none of the statements CMWO, CML and its
equivalents listed in diagraml.

Form 10 implies none of the statements CMWS, CMS and 154 (Theo-
rem 3.5, Theorem 3.6).

CMC and statement P, P € {CML, (D), (W)}, are mutually indepen-
dent (Theorem 3.1).

(W) implies none of the statements CAC, CMWO and 154 (Theorem
3.1, Theorem 3.6).

The statements (&), (£) are not provable in ZF® (Theorem 3.6).

Questions. (i) Does any of CMWS, CMC imply CMWL?
(ii) Does (10) imply (W)?
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