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Abstract

In ZF, the well known Fichtenholz-Kantorovich-Hausdorff theorem
concerning the existence of independent families of X of size |P(X)| is
equivalent to the following portion of the equally well known Hewitt-
Marczewski-Pondiczery theorem concerning the the density of product
spaces: “The product 2P(X) has a dense subset of size |X|”. However,
the latter statement turns out to be strictly weaker than AC but the
full Hewitt-Marczewski-Pondiczery theorem is equivalent to AC.

We study the relative strengths in ZF between the statement “X
has no independent family of size |P(X)|” and some of the definitions
of “X is finite” studied in Levy’s classic paper, observing that the
former statement implies one such definition, is implied by another,
and incomparable with some others.

Keywords: Axiom of choice, weak axioms of choice, Hewitt-Marczewski-
Pondiczery theorem, Fichtenholz-Kantorovich-Hausdorff theorem, Boolean
prime ideal theorem, notions of finiteness.
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1 Notation and Prerequisites

2X denotes the Tychonoff product of the discrete space 2 (2 = {0, 1} is taken
with the discrete topology). The canonical (clopen) base for the product
topology on 2X will be denoted by

B(2X) = {[p] : p ∈ Fn(X, 2, ω)},
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where Fn(X, 2, ω) is the set of all finite partial functions from X into 2 and

[p] = {f ∈ 2X : p ⊂ f}.

A family F of subsets of X is independent if for any two non-empty finite
and disjoint subsets A,B ⊆ F the set

⋂
A ∩ (

⋂
{Bc : B ∈ B} is infinite. An

independent family of subsets of X is called large if it has cardinality |P(X)|.
Below we define the choice principles we are going to deal with in this

paper. Let X be an infinite set:

1. LIF(X) : X has a Large Independent Family—that is, an independent
family of size |P(X)|.

2. FKHT (Fichtenholz-Kantorovich-Hausdorff theorem) : For every in-
finite set X, LIF(X).

3. HM(X) : The product 2P(X) has a dense set of size |X|.

4. HMPT (Hewitt-Marczewski-Pondiczery theorem) : For every infinite
set X, HM(X).

5. SHMPT (Strong Hewitt-Marczewski-Pondiczery theorem) : For every
set k and every family {Xi : i ∈ I} of topological spaces such that
|I| ≤ |2k| and each Xi has a dense subset of size ≤ |k|, the Tychonoff
product X =

∏
i∈I Xi has a dense set of size ≤ |k|.

6. T(X) : |X ×X| = |X|.

7. T+(X) : |X| = |[X]<ω|. ([X]<ω denotes the set of finite subsets of X.)

8. BPI(X) : Every filterbase of X is included in an ultrafilter of X.

9. BPI : (∀Y )BPI(Y ).

10. AC : Every family of non-empty sets has a choice function.

In this paper, the intended context for reasoning and statements of the-
orems will be ZF, unless otherwise noted. The theory ZFA is a weakening
of ZF which allows atoms. Some independence results will be obtained by
using permutation models, which are models of ZFA. However, unless oth-
erwise noted, these results transfer to yield independence results in ZF by
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the embedding theorems of Jech and Sochor, and of Pincus. We will also
use symmetric models, which are models of ZF. For more about ZFA,
permutation models, symmetric models, embedding theorems, and further
references, please see [6], and see Note 103 of [5] for a summary of further
embedding (transfer) theorems. We will freely use terminology and tech-
niques for working with permutation models and symmetric models as found
in [6]. In particular, we will refer to some well-known models of ZF and
ZFA which are described well in [6], namely, the Basic Fraenkel Model, the
Ordered Mostowski Model, and the Basic Cohen Model.

2 Introduction and some preliminary results

The remarkable Hewitt-Marczewski-Pondiczery theorem SHMPT is con-
cerned with the density of product spaces and has a plethora of applications
in general topology. (This is no surprise as we will see in the forthcoming
Theorem 1 that SHMPT is yet another disguised form of the axiom of choice
AC.) Likewise, the Fichtenholz-Kantorovich-Hausdorff theorem FKHT has
numerous applications in general topology, as well as in set theory. (State-
ments of these theorems are in the previous section.) In ongoing investi-
gations of topology assuming only weak choice principles, we have found it
helpful to understand more about the strength of these theorems in ZF.

The theorem HMPT is a special case of the strong form SHMPT. Part
(i) of the next theorem is well known and it states that FKHT is a conse-
quence of HMPT.

Theorem 1. (i) Let X be an infinite set. HM(X) implies LIF(X). Hence,
HMPT implies FKHT.
(ii) SHMPT implies AC.

Proof. (i) Fix X an infinite set and let, by our hypothesis, D be a dense
subset of 2P(X) of size |X|. It is easy to see that the family A = {Ax = {d ∈
D : d(x) = 1} : x ∈ P(X)} is independent.

(ii) Tarski proved in [9] that AC is equivalent to the statement “for all
infinite X, |X × X| = |X|,” and so for this paper, we use T(X) as an
abbreviation for |X ×X| = |X|. We will show that SHMPT implies T(X)
for every infinite set X.

Let X be infinite and carry the discrete topology. By SHMPT, the
product space X × X has a dense set D with |D| ≤ |X|. But X × X is
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discrete, so D = X ×X, and thus |X ×X| = |X|.

In view of Theorem 1 one may ask the following questions:

Question 1. Does FKHT imply HMPT in ZF?

Question 2. Does HMPT imply AC in ZF?

We will answer affirmatively for Question 1 in Section 3, and find that
the answer to Question 2 is no, in Section 4.

Looking at a “textbook” proof of FKHT (for example, [7]) quickly yields
the following lemma about independent families, provable in ZF.

Lemma 2. Let X be an infinite set, and let

H(X) = {〈F,A〉 : F ∈ [X]<ω and A ⊆ P(X)}.

Then H(X) has an independent family whose cardinality is |P(X)|.

In the case where X is well-orderable, it is apparent that |H(X)| = |X|,
and so in ZFC, the lemma yields FKHT as an immediate corollary. In ZF,
we observe that the condition |X| = |H(X)| is equivalent to the condition
|X| = |[X]<ω|, which we call T+(X) in this paper (see Proposition 5 below
for a proof of this observation), so we have the theorem: T+(X) implies
LIF(X).

On the other hand, we can quickly see that LIF(X) is not a theorem
of ZF. If X has an independent family of size |P(X)|, then this indepen-
dent family witnesses that the set P(X) has a proper subset with the same
cardinality as itself. This trivial observation has a non-trivial consequence:
P(X) is Dedekind infinite (equivalently, P(X) has an infinite well-orderable
subset). Thus:

Proposition 3. If ZF is consistent, then FKHT is not a theorem of ZF +
BPI.

Proof. The Ordered Mostowski Model of ZFA is a model of ZFA in which
BPI holds ([6]). It has an infinite set whose power set is Dedekind finite
([4]), and so FKHT is false by the discussion just above.

This shows that the sentence “BPI, and ∃X such that ¬LIF(X)” is
consistent with ZFA, and this result transfers from ZFA to ZF, as mentioned
in the previous section, by theorems of Pincus in [8].
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To summarize, we have these preliminary bounds for the strength of
LIF(X):

Proposition 4. For any infinite set X, T+(X) ⇒ LIF(X) ⇒ “P(X) is
Dedekind infinite.”

The condition of a set X having a Dedekind finite power set is a well-
studied finiteness condition (e.g. called III-finiteness by Levy in [4] and ∆4-
finiteness by Truss in [10]), clearly stronger than Dedekind finiteness of X
itself. (It is worth mentioning that III-finiteness of X is equivalent to the
existence of a surjection fromX onto ω.) Proposition 4 says that III-finiteness
of X implies the lack of an independent family of size |P(X)|, which in turn
implies that |X| is strictly smaller than |[X]<ω|. This last condition can
also be considered a notion of finiteness (a rather weak one), since in ZFC,
|X| < |[X]<ω| is true only for finite sets. We are lead investigate the following
question (Section 5):

Question 3. How does the strength of LIF(X) (or ¬LIF(X)) in ZF relate
to other well-understood notions of finiteness (Dedekind finiteness of X, and
others)?

We next establish some equivalents of T(X) and of the stronger arith-
metical principle T+(X). (As mentioned in the proof of Theorem 1, the
statement “For all infinite X, T(X)” implies AC, so it will follow from part
(ii) below that “For all infinite X, T+(X)” implies AC.)

Proposition 5. Let X be any infinite set.
(i) T(X) iff |X| = |X<ω|, where X<ω is the set of finite sequences of elements
of X.
(ii) T+(X) implies T(X).
(iii) T+(X) iff |Fn(X, 2, ω)| = |X|.
(iv) T+(X) iff |H(X)| = |X|, where H(X) is as in Lemma 2.

Note: We will show in Corollary 18 below that the converse of (ii) may
fail in ZF; that is, T+(X) is strictly stronger than T(X).

Proof. (i) Clearly, T(X) implies |X × 2| = |X|. This weaker arithmetic
statement is well known to be equivalent to |ω×X| = |X|, and implies that
X is Dedekind infinite.

Furthermore, T(X) implies that one can define effectively for all n ∈ ω
a one-to-one and onto function fn : Xn → X (an injection from X2 to X
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can be used to construct an injection from X4 to X2, etc.). From the family
{fn : n ∈ ω} and a bijection from ω × X to X, it is easy to show that
|X| = |X<ω|.

(ii) Assume T+(X). As a first step, we will show that |X × 2| = |X|.
Fix distinct elements c, d ∈ X, and then define A = { {x} : x ∈ X} and
B = { {c, d, x} : x ∈ X} ∪ {∅}. Clearly A and B are disjoint subsets of
[X]<ω, each with cardinality |X|, and we have |X| ≤ |X × 2| = |A ∪ B| ≤
|[X]<ω| = |X|.

Now it follows from T+(X) that |[X×2]<ω| = |X|. The function H : X×
X → [X × 2]<ω given by H(〈x, y〉) = {〈x, 0〉, 〈y, 1〉} is clearly one-to-one.
Therefore, |X| ≤ |X ×X| ≤ |[X × 2]<ω| = |X|.

(iii) and (iv) An injection [X]<ω → Fn(X, 2, ω) is given by B 7→ B×{1}.
An injection Fn(X, 2, ω)→ H(X) is given by g 7→ 〈Dom(g), {g−1(1), g−1(0)}〉.
(It is easy to see these are both one-to-one.) Thus

|X| ≤ |[X]<ω| ≤ |Fn(X, 2, ω)| ≤ |H(X)|.

So if either of the two larger sets has cardinality |X|, then T+(X).
Conversely, assume T+(X). Then by part (ii) and repeated applications

of T+(X), we have |X| = |[X]<ω × [[X]<ω]<ω|. Since H(X) is a subset of
[X]<ω × [[X]<ω]<ω, all the cardinalities displayed above must be equal.

3 Equivalence of the FKH and HMP Theo-

rems

We first show that LIF(X) is equivalent to a stronger looking formulation
of LIF(X).

Lemma 6. Let X be an infinite set.
(i) LIF(X) implies T+(P(X)) (that is, |[P(X)]<ω| = |P(X)|.)
(ii) LIF(X) is equivalent to the statement “there exists an independent family
A of subsets of X of size |P(X)| such that for every x, y ∈ X, x 6= y there
exists A ∈ A with x ∈ A and y /∈ A”.

Proof. (i) Fix X an infinite set and let, by our hypothesis, A = {Ai : i ∈
P(X)} be an independent family of subsets of X. Define a function H :
[P(X)]<ω → P(X) by requiring:

H(F ) =
⋂
{Ai : i ∈ F}.
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We show that H is one-to-one. Fix F,K ∈ [P(X)]<ω, F 6= K with H(F ) =
H(K) and let i0 ∈ F\K. Clearly, H(F ) ∩ Aci0 = ∅, while H(K) ∩ Aci0 6=
∅. Contradiction! Thus, H(F ) 6= H(K) and H is as required. Hence,
|[P(X)]<ω| = |P(X)| finishing the proof of the claim.

(ii) It suffices to show (→) as the other implication is obvious.
From (i), one can readily verify that |X×X| ≤ |P(X)|. Fix f : X×X →

P(X) a one-to-one function. For every (x, y) ∈ X × X, x 6= y replace the
element f((x, y)) of A by the subset {x} ∪ (f((x, y))\{y}) of X. Let B =
(A\{f((x, y)) : (x, y) ∈ X × X, x 6= y}) ∪ {{x} ∪ (f((x, y))\{y}) : (x, y) ∈
X ×X, x 6= y}. It can be readily verified that B is an independent family of
subsets of X of size |P(X)| such that for every x, y ∈ X, x 6= y there exists
B ∈ B with x ∈ B and y /∈ B.

Now we are equipped to answer Question 1.

Theorem 7. For every infinite set X, LIF(X) iff HM(X). In particular,
HMPT iff FKHT.

Proof. It suffices, in view of the proof of Theorem 1, to show that LIF(X)
implies HM(X). Fix, by Lemma 6, an independent family A of X of size
|P(X)| such that for all x, y ∈ X, x 6= y there exist A ∈ A with x ∈ A and
y /∈ A. Let f : X → 2A be the function given by f(x) = (χA(x))A∈A. We
show {f(x) : x ∈ X} = 2A. Fix [p] a basic open set of 2A and let

Wp = p−1(1) ∪ {Ac : A ∈ p−1(0)}.

Since p is finite and A is an independent family, it follows that
⋂
Wp 6= ∅.

Hence, for every x ∈
⋂
Wp, f(x) ∈ [p] and {f(x) : x ∈ X} = 2A. Since for

all x, y ∈ X, x 6= y, f(x) 6= f(y) (if A ∈ A is such that x ∈ A and y ∈ Ac
then f(x)(A) = 1 and f(y)(A) = 0), it follows that D = {f(x) : x ∈ X} is
a dense subset of 2A of size |X|. Since |A| = |P(X)| the conclusion follows
immediately.

Theorem 8. Let Y be an infinite set and D a dense subset of the product
2Y . Then, |[Y ]<ω| ≤ |P(D)|. In particular, HM(X) implies T+(P(X)).

Proof. To see this, fix a dense set D of 2Y and let H : Fn(Y, 2, ω) → P(D)
be the function given by the rule: H(p) = [p] ∩ D. It is straightforward
to verify that H is one-to-one. Thus, |Fn(Y, 2, ω))| ≤ |P(D)|. Since the

7



function T : [Y ]<ω → Fn(Y, 2, ω) given by T (A) = χA, is clearly one-to-one,
it follows that |[Y ]<ω| ≤ |Fn(Y, 2, ω))| ≤ |P(D)| as required.

The second assertion follows from the first part and the fact that the
product 2P(X) has, in view of HM(X), a dense set D of size |X|.

4 Independence of FKHT from AC

This section will answer Question 2 by showing that FKHT is consistent
with ¬AC in ZF. Consider the following statement (∗) about cardinal ex-
ponentiation, which may be considered a weak choice principle:

(∗) For every X, there is a well-ordered cardinal ℵ such that X has a
partition of size ℵ, and 2|X| = 2ℵ.

We will show that (∗) implies FKHT, and then show that (∗) is consistent
with ¬AC in ZF.

Lemma 9. (i) If Z has an independent family F , and there is a surjection
from X onto Z (or equivalently, X has a partition of cardinality |Z|), then
X has an independent family of cardinality |F|.
(ii) The principle (∗) above implies FKHT.

Proof. (i) Given an onto function f : X → Z, it is easy to see that the set
{f−1(Y ) : Y ∈ F} is the required independent family of subsets of X.

(ii) Suppose X has a partition W of cardinality ℵ. Since W is well-
orderable, W has an independent family of cardinality 2ℵ. Then by part (i),
so does X.

Theorem 10. If ZF is consistent, then ZF + BPI + FKHT is consistent
with the existence of an infinite, Dedekind finite set of reals. (Hence, FKHT
is not equivalent to AC in ZF.)

Proof. Let N denote the Basic Cohen Model. The model N is a symmetric
model obtained by starting with a ground modelM of ZFC, then forcing to
a generic extension M[G] by adding a countable sequence of Cohen generic
reals, and then retracting to a model N ⊂ M[G] which contains the count-
able set of generic reals, which we’ll call A, but no well-ordered enumeration
of any infinite subset of A. Thus A is Dedekind finite in N , and so is the set
B = [A]<ω. It is well-known that BPI holds in N .
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It remains to show that FKHT holds in N . By Lemma 9 (ii), it suffices
to show that the principle (∗) holds in N . The following known facts about
N are useful here.

F1. In N , every infinite set has an infinite, countable partition. (A proof
is in [10]. This is Form 82 in the reference [5].)

F2. For every X ∈ N , there is an ordinal α and a function f ∈ N such
that f : X → B × α is one-to-one. (Lemma 5.25 in [6]).

We will identify well-orderable cardinals with initial ordinals, and the variable
κ will range over these. For each set X ∈ N , define K(X) to be the least κ
such that in N , |X| ≤ |κ×B|. (The definition makes sense by fact F2 above.)
Observe that if κ = K(X), then there exists a one-to-one function j : X →
κ×B in N such that for each α < κ, the set j−1({α}×B) is nonempty, and
hence the sets of this form compose a partition of X of cardinality κ.

Let X ∈ N be an infinite set, and fix κ = max{K(X),ℵ0}. By the
previous paragraph and fact F1 above, X has a partition of cardinality κ in
N . It follows that N |= 2κ ≤ 2|X|. It now remains to show that N |= 2|X| ≤
2κ.

Case 1: K(X) ≤ κ = ℵ0.
In this case, let P = (P(X))N , the power set of X in N ; we’ll show |P | ≤

2ℵ0 . The hypothesis implies there exists in N a one-to-one j : X → ℵ0 × B.
Let c denote the (well-orderable) cardinality of the continuum in M (and
in M[G]), and c+ its successor. In M[G], the set B is countable, and so X
is countable and |P | ≤ |P(X)| = c. It follows there is no partition of P of
cardinality c+ in M[G], or in N .

Thus N |= K(P ) ≤ c, and so |P | ≤ |c × B|. Clearly c < |R| in N , and
since A ⊆ R, we have |B| = |[A]<ω| ≤ |[R]<ω| = |R|. So |P | ≤ |c × B| ≤
|R× R| = 2ℵ0 in N .

Case 2: K(X) = κ ≥ ℵ1.
Work in N . Since K(B) = 1, it follows from Case 1 that 2|B| = 2ℵ0 .

From κ = K(X), it follows that |X| ≤ |κ×B|. Thus

2|X| ≤ 2|κ×B| = (2|B|)κ = (2ℵ0)κ = 2κ.

This finishes Case 2 and the proof of the theorem.
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5 Some Notions of Finiteness

In [4], Levy studied several definitions of finiteness, including the following:

• X is III-finite if P(X) is Dedekind finite.

• X is IV-finite if X is Dedekind finite. (That is, X has no infinite,
well-orderable subset.)

• X is V-finite if |X| < 2|X| or |X| = 0.

• X is VI-finite if |X| < |X|2 or |X| ≤ 1. (Equivalently, in our terminol-
ogy, ¬T(X).)

In [10], Truss studied several definitions of finiteness, (some of which
were equivalent to some of Levy’s), including this strengthening of Dedekind
finiteness:

• X is ∆3-finite if X has no infinite, linearly orderable subset.

Remark 11. It is established in [4] that each of Levy’s notions listed is
stronger than the notions following in the list (III → IV → V → VI), and
indeed strictly stronger, finding in the Ordered Mostowski Model examples
to show that the implications are not reversible. In [10], the independence
of III and ∆3 from each other is established.

We observed in the introduction that if X is III-finite, then X has no in-
dependent family of size |P(X)|. The next theorem will show that ¬LIF(X)
implies that X is VI-finite, bounding the strength of ¬LIF(X) on both ends
by some of Lévy’s notions of finiteness.

Theorem 12. For any infinite set X, T(X) implies LIF(X). (In other
words, ¬LIF(X) implies that X is VI-finite.)

Proof. Let X be an infinite set, and assume T(X). From Proposition 5,
T(X) implies |X| = |X<ω| and |X| = |X ×ω|, whence |X| = |Y | where Y =
X<ω × [[ω]<ω]<ω. Recall the set H(X) from Lemma 2, and define a function
f : Y → H(X) as follows. For a pair 〈s, T 〉 ∈ Y , with s = (x1, . . . xn), define

f(s, T ) = 〈{x1, . . . , xn}, { {xi : i ∈ t} : t ∈ T }.

10



It is easy to see that f is surjective.

By Lemma 2, H(X) has an independent family I of size |P(X)|. Since
|X| = |Y | and Y can be mapped surjectively onto H(X), it follows from
Lemma 9(i) that |X| also has an independent family of size |P(X)|.

Theorem 12 has given an improvement over Proposition 4. The following
diagram now summarizes implications provable in ZF for a given set X, as
given by Propositions 4 and Proposition 5, Remark 11, and Theorem 12, In
the diagram, “III(X)” is an abbreviation for “X is III-finite,” etc.

∆3(X)

''OOOOOOOO

III(X) //

**TTTTTTTTTTTTT IV(X) // V(X) // VI(X) // ¬T+(X)

¬LIF(X)

44jjjjjjjjjjjjj

We will show that none of these implications is reversible in ZF, and that
the diagram is the best possible between these particular statements, with
no implications provable in ZF beyond those following from the given arrows
and transitivity. Given the known independence results in Remark 11, it
just needs to be shown that ∆3(X) 6→ ¬LIF(X), ¬LIF(X) 6→ V(X), and
¬T+(X) 6→ VI(X); these statements can be found below in Corollaries 14,
17, and 18, respectively.

The proof of Theorem 10 showed that a certain model of ZF has Dedekind
finite sets with large independent families. We will now show the relative
consistency of ∆3-finite sets with large independent families, a stronger result.
Thus, although LIF(X) requires a strong “infiniteness” condition on P(X)
(part (i) of Lemma 6), LIF(X) turns out to be consistent with fairly strong
finiteness conditions on X itself.

Theorem 13. Let L be an infinite set, and suppose there exists a choice
function which assigns, to each finite subset F of L, a linear ordering of
F . (For example, if the Axiom of Choice for families of finite sets is also
assumed, then such a choice function would exist for every set L.) Let X =
[L]<ω × [L]<ω. Then
(i) LIF(X) holds, and
(ii) if moreover L is ∆3-finite, then the sets [L]<ω and X are also ∆3-finite.

11



Proof. Let L be an infinite set, and let F 7→4F be an assignment giving a
linear ordering 4F to every finite F ⊂ L.

The proof of part (ii) is short. Suppose L is ∆3-finite. Using the as-
signment F 7→4F , we can easily define an injection from [L]<ω to the set of
finite sequences of members of L with no repeating entries. This latter set is
∆3-finite by [10, Lemma 6], and hence [L]<ω and X are also ∆3-finite.

To prove part (i), let X = [L]<ω × [L]<ω. To show that LIF(X) holds,
it will suffice to show that there is a surjective function f : X → H(X) (by
Lemmas 2 and 9(i)). Observe that the function t : X = [L]<ω × [L]<ω →
[L]<ω ×ω defined by t(〈E,F 〉) = 〈E, |F |〉 is surjective, so it remains to show
that there exists a surjection from [L]<ω × ω to H(X).

Let E be a finite subset of L. From the order 4E, we can easily define a
linear order on the finite set P(E) (lexicographically). In turn, we can define
a linear order on P(E) = P(P(E)), and so on hierarchically. In this way, for
each E ∈ [L]<ω, we can effectively define an order ≤E, in order type ω, of
the set Pω(E) =

⋃
n∈ω Pn(E).

Observe, from the definitions of X and H(X), that H(X) ⊂ Pω(L). (See
that [L]<ω ⊂ P(L), so X = ([L]<ω)2 ⊆ P3(L) if Kuratowski ordered pairs
are used, and so on.) Moreover, if 〈S, T 〉 ∈ H(X), then S is a finite set
{〈E1, F1〉, . . . 〈Em, Fm〉} with each Ej and Fj in [L]<ω, and so there is a finite
E (take E =

⋃m
j=1(Ej ∪ Fj)) such that S and 〈S, T 〉 are members of Pω(E).

Define a function h : [L]<ω × ω → Pω(L) by declaring h(E, n) to be the
nth element in the order ≤E on Pω(E). We have just argued that in fact
every element of H(X) is in the range of h. Thus, h maps [L]<ω × ω onto
H(X), and this completes the proof.

Corollary 14. If ZF is consistent, then ∆3(X) does not imply ¬LIF(X) in
ZF (and hence none of VI(X), V(X), or VI(X) imply ¬LIF(X).)

Proof. Consider the permutation model used by Läuchli [3] to establish the
independence of AC for Finite Sets (“every collection of non-empty finite sets
has a choice function”) from the Ordering Principle (“every set is linearly
orderable”). (The model is denoted N 7 in [5], and it is described in section
7.3 of [6].) In this model, the set A of atoms is ∆3-finite (the proof in [6]
that A is not linearly orderable shows just as well that no infinite subset is
linearly orderable), but AC for Finite Sets holds. Thus, by Theorem 13, the
set X = [A]<ω × [A]<ω satisfies LIF(X) and ∆3(X) in this model.

Remark 15. The argument of Theorem 13 can be modified to show, for
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example, that whenever L is an infinite, linearly orderable Dedekind finite
set, the Dedekind finite set [L]<ω × [L]<ω has a large independent family.

The next result, together with Lemma 6, will yield that 2|X| = |X| does
not imply LIF(X) in ZF; or in other words, ¬LIF(X) does not imply V(X).

Theorem 16. ZF is consistent with the existence of a set X such that 2|X| =
|X| and ¬T+(P(X)).

Proof. Let N be the basic Fraenkel model, and let A denote the set of atoms
in N . In N , A is amorphous, meaning that it is infinite but has no partition
into two infinite parts. Let X = A × ω. Clearly, 2|X| = |A × ω × 2| =
|A× ω| = |X|.

Next, suppose that T+(P(X)) holds. First observe that |P(A × ω)| =
2|ω×A| = |RA|. (RA denotes the set of functions from A to R.) So the
assumption T+(RA) yields |[RA]<ω| = |RA|. Let Φ: [RA]<ω → RA be a
bijection, with Φ ∈ N . We will derive a contradiction from this.

Let E ⊂ A be a finite support for Φ. Let a1, a2, a3, a4 ∈ A \ E, and let
π be the permutation of A which cycles those four atoms, mapping a1 to a2

and so on, leaving all other atoms fixed. Observe that π(Φ) = Φ (since π
fixes all elements of E). Let g1 be the characteristic function χ{a1,a2} ∈ RA;
then let g2 = π(g1), g3 = π(g2), and g4 = π(g3). Then clearly we also have
g1 = π(g4). It follows that π fixes the function f := Φ({g1, g2, g3, g4}) ∈ RA.
Thus f(a1) = f(π(a1)) = f(a2). (Repeating this reasoning, it follows that f
is constant on the set {a1, a2, a3, a4}.)

Next, let ρ be the permutation of A which swaps a1 with a2, and leaves
all other atoms fixed. Since f(a1) = f(a2), in fact ρ fixes f . And ρ also fixes
all elements of E, so ρ(Φ) = Φ. Thus f = Φ(ρ({g1, g2, g3, g4})). But this is a
contradiction, since Φ is supposed to be one-to-one, but ρ({g1, g2, g3, g4}) 6=
{g1, g2, g3, g4}.

Corollary 17. In ZF, it is not provable that for every infinite set X, 2|X| =
|X| implies LIF(X).

Proof. Follows from Theorem 16 just above and Lemma 6, which says that
LIF(X) implies T+(P(X)).

Corollary 18. In ZF, it is not provable that for every infinite set Y , T(Y )
implies T+(Y ).
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Proof. First observe that for any X such that 2|X| = |X|, we have T(P(X)),
since (2|X|)2 = 22|X| = 2|X|. The result now follows from Theorem 16, taking
Y = P(X).

The models of ZF and ZFA used in this paper so far all have Dedekind
sets. (The proof of Theorem 16 exhibited a set X which is Dedekind infinite
for which LIF(X) is false, but this X has subsets which are amorphous,
hence infinite but Dedekind finite.) Here is one more independence result,
showing that LIF(X) can fail even when there are no Dedekind sets.

Theorem 19. ZF + “Every Dedekind finite set is finite” is consistent with
¬FKHT.

Proof. We use the permutation model N which is called N 2(ℵ1), “Jech’s
model,” in [5], in which every Dedekind finite set is finite (Form 9 in [5]).
The model is obtained as follows. Let A be the set of atoms in a model of
ZFA, and let {Pi : i ∈ ℵ1} be a partition of A into pairs. Then N is the
permutation submodel formed from the group G = {g ∈ Sym(A) : ∀i ∈
ℵi g(Pi) = Pi} (identifying permutations of A with automorphisms of the
model), and countable supports.

We will show that LIF(A) is false in this model. Let I be an independent
family of subsets of A, and let C ⊂ A be a countable support for I. Since
C is countable, there is some α < ℵ1 such that C ⊆

⋃
i≤α Pi. We claim

that every member of I is a union of sets in the pairwise disjoint family
F = {{a} : a ∈ Pi and i ≤ α} ∪ {Pi : α < i < ℵ1}. Suppose the claim
is false, so there exist some S ∈ I and some β such that α < β < ℵ1 and
|S ∩ Pβ| = 1. Let g ∈ G be the permutation which swaps the two elements
of Pβ and leaves all other atoms fixed. Then g fixes each element of C, so
g(I) = I. It follows that g(S) ∈ I. But the sets S and g(S) differ only on
elements of the finite set Pi, so this is a contradiction; they cannot both be
members of the same independent family.

From the claim it follows that each member of I corresponds to a distinct
subset of F , so that |I| ≤ |P(F )|. Observe that |F | = ℵ1, and P(ℵ1) is always
linearly orderable (in fact, it is well-orderable in this model). However, A is
not linearly orderable, so |A| 6≤ |P(F )|, and hence |P(A)| 6≤ |P(F )|. Thus
|I| 6= |P(A)|. Since I was an arbitrary independent family on A, ¬LIF(A)
has been shown.

Remark. (Some other notions of finiteness.) More notions of finiteness
have been considered in the literature. De la Cruz [1] serves as a good
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overview, with summaries of known results and a few new results, and a nice
diagram. We mention a couple more notions here.

• X is ∆5-finite if there is no surjective function from X to X ∪ {u},
with u /∈ X (Truss [10]).

The notion ∆5 lies between III and IV in strength, so it can be asked
whether ∆5(X) is strong enough to imply ¬LIF(X). The answer is
no, because the Basic Cohen Model contains infinite ∆5-finite sets (see
[10] for a proof). Thus the proof of Theorem 10 shows that ∆5(X) is
consistent with LIF(X).

• X is VI′′-finite if P(X) is VI-finite (i.e. ¬T(P(X))).

Clearly III(X) → VI′′(X). Part (i) of Lemma 6 immediately implies
that VI′′(X)→ ¬LIF(X). The proofs of Theorem 16 and Corollary 18
show that this implication is not reversible in ZF.

From the results covered in the present paper (including the observations
just above) and De la Cruz’s diagram, the relative strengths of ¬LIF(X)
compared with any of the notions in [1] are clear.
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