Περίληψη στη Λογική των Προτάσεων. Ακαδημαικό έτος 2001 - 2002 | ||
| ![]() |
Η Λογική χωρίζεται σε δύο μεγάλα τμήματα την Λογική των Προτάσεων και την Λογική των Κατηγορημάτων. Η δεύτερη λογική είναι πολύ πιό πλούσια από την πρώτη διότι οι προτάσεις της κτίζονται πάνω σε κατηγορήματα δηλ. τύπους που περιέχουν και μεταβλητές ενώ στην πρώτη Λογική επιτρέπονται μόνο ατομικές προτάσεις (ή άλλες πιο σύνθετες που έχουν όμως κατασκευαστεί με κάποιους αυστηρούς κανόνες από τις ατομικές). Έτσι για παράδειγμα "σήμερα βρέχει" είναι μια απλή ατομική πρόταση ενώ η πρόταση "υπάρχουν χωριά χωρίς ρεύμα" μπορεί να θεωρηθεί ότι δεν ανήκει στην Λογική των Προτάσεων(ή Προτασιακό Λογισμό) αλλά στην Λογική των Κατηγορημάτων(ή Κατηγορηματικό Λογισμό). Διότι μπορούμε εύκολα να δούμε δύο υπαρκτά κατηγορήματα μιας μεταβλητής: "το x είναι ένα χωριό" και "το x δεν έχει ρεύμα" μέσα στην πρόταση. |
Λογική των Προτάσεων |
Α Μερος. Λογική των Προτάσεων. Για να γράψουμε μια ατομική πρόταση ή μιά πιό σύνθετη χρησιμοποιούμε κάποια σύμβολα και κάποιο συντακτικό για να χειριζόμαστε σωστά τα σύμβολα. Ετσι μια οποιαδήποτε τυπική γλώσσα(γλώσσα εννούμε φυσικά ένα σύνολο συμβόλων όπως για παράδειγμα τα γράμματα μιας γραφομηχανής)αποτελείται από
![]()
| |
Είδη των Προτάσεων |
Με βάση τις εκτιμήσεις αλήθειας έχουμε χωρίσει τις προτάσεις της γλώσσας μας σε:
Για παράδειγμα η πρόταση Κ: Οι αληθοπίνακες αποτελούν ένα απλό τρόπο να καταγράφουμε όλες τις
αποτιμήσεις αλήθειας για μιά δοθείσα πρόταση. Π.χ ο αληθοπίνακας της προτασης
Υπάρχουν μερικές ταυτολογίες που τις χρησιμοποιούμε αρκετά συχνά. Αναφέρουμε για παράδειγμα τους νόμους του De Morgan, τον νόμο της Διπλής άρνησης, τον νόμο της άρνησης κοκ. Όταν λέμε νόμο εννοούμε μια πολύ χρήσιμη ταυτολογία. Με αληθοπίνακες μπορούμε να δείξουμε τους παρακάτω νόμους της λογικής των Προτάσεων:
Μιά σπουδαία έννοια της Λογικής είναι και η έννοια της συνέπειας. Στην
καθημερινή μας ζωή λέμε π.χ αν δεν διαβάζεις, αν δεν παρακολουθείς τα μαθήματα
αν... και αν... τότε αυτό θα έχει ως συνέπεια να μην περάσεις το μάθημα κοκ. με
το ίδιο ακριβώς τρόπο ορίζουμε την έννοια της συνέπειας και στη Προτασιακή
Λογική. Έστω λοιπόν Σ ένα σύνολο προτάσεων. Θα λέμε οτι το Σ έχει ως
(ταυτολογική)συνέπεια
την πρόταση σ (και γράφουμε Μια άλλη σημαντική έννοια είναι η έννοια του πότε ένα σύνολο Σ είναι συνεπές δηλ. επαληθεύσιμο. Είναι νομίζω φανερό από τον ορισμό ότι ένα ασυνεπές σύνολο είναι τόσο τρομερό ώστε να μπορεί να έχει ως συνέπεια του μια οποιαδήποτε πρόταση ακόμα και αντίφαση!! (Αυτό συμβαίνει και με τους ασυνεπείς ανθρώπους... δεν μπορείς να βασίζεσαι) Με Ερμ(Σ) συμβολίζουμε το σύνολο όλων των εκτιμήσεων αληθείας που επαληθεύουν κάθε πρόταση του Σ. Ισχύουν αρκετές ιδιότητες σχετικά με Συν(Σ) και Ερμ(Σ). Χρησιμοποιώντας τους νόμους που αναφέραμε προηγουμένως μπορούμε να φέρουμε
μια οποιαδήποτε πρόταση σε Διαζευκτική Κανονική Μορφή(ΔΚΜ) και σε
Συζευκτική Κανονική Μορφή(ΣΚΜ). Η ΔΚΜ είναι διάζευξη ή διαζεύξεις
συζεύξεων στοιχειωδών προτάσεων. Κατ'αρχην με στοιχειώδη
πρόταση είναι σε ΔΚΜ ενώ η ΣΚΜ έχει μέσα στις παρενθέσεις τις διαζεύξεις και απ'έξω τις συζεύξεις (σύζευξη διαζεύξεων). Αυτές οι μορφές χρησιμοποιούνται πάρα πολύ στην πράξη και θα πρέπει να έχουμε εξασκηθεί για να φέρνουμε κάθε πρόταση σε μια απ'τις παραπάνω μορφές. Να μερικές παρατηρήσεις:
Για παράδειγμα η πρόταση μπορεί να γραφεί ως σύνολο προγραμματικών τύπων ώς:
Φυσικά επειδή υπάρχει το δηλ. η πρόταση Προσοχή δεν μπορούμε να κάνουμε επίλυση ενός ατόμου με την άρνησή
του όταν βρίσκονται μέσα στον ίδιο προγραμματικό
τύπο! (διότι π.χ το Ορισμός Έστω Σ ενα σύνολο προγραμματικών τύπων και σ μια πρόταση σε ΣΚΜ δηλ. ειναι γραμμένη ως σύζευξη των προγραμματικών τύπων C1, C2, ..., Cn . Γράφουμε και λέμε ότι η σ είναι απόδειξη με επίλυση από το Σ, εαν για κάθε προγραμματικό τύπο Ci της σ, υπάρχει μια απόδειξη με επίλυση απο το Σ της οποίας ο τελευταίος προγραμματικός τύπος της είναι ο Ci. Μια ιδιαίτερη περίπτωση είναι εκείνη στην οποία μετά από επίλυση
προκύπτει το κενό! Για παράδειγμα εάν έχουμε ένα σύνολο προτάσεων Σ (σε
ΣΚΜ) και κατά την πορεία μιας επίλυσης προκύψουν οι τύποι
Τώρα που μιλάμε για ασυνεπές σύνολο να δώσουμε το περίφημο Θεώρημα του Συμπεράσματος που λέει για οποιοδήποτε Σ και σ, τ προτάσεις ότι:
φυσικά αντί
Τελειώνουμε με μια άλλη έννοια απόδειξης μιας πρότασης δηλ. της απόδειξης χρησιμοποιώντας αξιωματικές μεθόδους. Είναι γνωστό ότι όλες οι σοβαρές επιστήμες στηρίζoνται σε κάποια αξιωματικά πλαίσια. και μεθόδους, πάρτε για παράδειγμα την Ευκλείδιο Γεωμετρία.Υπάρχουν εδώ κάποιες προτάσεις που τις έχουμε δεχτεί ώς αληθινές χωρίς να μας γνοιάζει αν ίσως σε κάποια αποτίμηση δεν αληθεύουν! Τις έχουμε δεχθεί απόλυτα δηλ. ως αξιώματα. Τις χρησιμοποιούμε με κάποιους συλλογιστικούς κανόνες(κανόνες παραγωγής νέων προτάσεων) και αποδεικνύουμε θεωρήματα(δηλ. προτάσεις που έπονται από τα αξιώματα και όχι κατανάγκη προτάσεις που είναι ταυτότητες ή ταυτολογίες!). Κάτι τέτοιο κάνουμε και στην αξιωματική μέθοδο δηλ:
Θα πρέπει να τονίσουμε οτι τα αξιώματα δεν είναι πεπερασμένα αλλά άπειρα το
πλήθος διότι με Ετσι λοιπον μπορούμε να ξεκινήσουμε να αποδεικνύουμε μια οποιαδήποτε πρόταση
(που φυσικά περιέχει σύμβολα μόνο απο την γκάμα των αξιωμάτων μας - εδώ μόνο με
Φυσικά έχουν προταθεί κατά καιρούς πολλά αξιωματικά συστήματα για να καλύψουν προτάσεις που περιέχουν και άλλους συνδέσμους π.χ διαζεύξεις κοκ. Γενικά η απόδειξη με αξιώματα αν και είναι μηχανική διαδικασία χρειάζεται φαντασία ώστε να χρησιμοποιήσουμε τα κατάλληλα αξιώματα με τις κατάλληλες εφαρμογές ΜΡ. Ευτυχώς υπάρχουν κάποιες προτάσεις που μας λύνουν τα χέρια. Ομως ας δώσουμε κατ΄αρχήν ένα ορισμό. Εστω Σ ένα σύνολο προτάσεων και Η σημαντική πρόταση που και εδώ ισχύει είναι το Θεώρημα του συμπεράσματος στην μορφή:
Απότι ηδη έχετε καταλάβει οι έννοιες
Τελειώνουμε με το Θεώρημα της Συμπάγειας που το χρησιμοποιούμε και στην τοπολογία! Θεώρημα της συμπάγειας: Ενα άπειρο σύνολο προτάσεων είναι ικανοποιήσιμο(δηλ. συνεπές) εάν και μόνον εαν κάθε πεπερασμένο υποσύνολό του είναι ικανοποιήσιμο!
|