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1 Introduction

Certain obstructions that appear in problems of topological rigidity of manifolds
are elements of algebraic K-groups, specially lower K-groups. For this reason,
the calculation of the lower K-groups has implications in geometric topology.

The main modern tool for calculating lowerK-groups (and other geometrically
interesting obstruction groups) is the Farrell–Jones Fibered Isomorphism Conjec-
ture. The Conjecture provides an inductive method for calculating the obstruction
groups of a group from those of certain subgroups. More specifically, if a group
satisfies the Fibered Isomorphism Conjecture for a specific theory, then the ob-
struction groups can be calculated from the obstruction groups of the virtually
cyclic subgroups. The last class of subgroups consists the finite subgroups and
groups that are virtually infinite cyclic. The virtually infinite cyclic groups are of
two types:

� Groups V that surject onto the infinite cyclic group Z with finite kernel, i.e.,
V D H Ì Z with H finite.

� Groups W that surject onto the infinite dihedral group D1 with finite kernel,
i.e., W D A �B C with B finite and ŒA W B� D ŒC W B� D 2.

Obstruction groups that can be calculated this way are pseudoisotopy groups,
K-groups of group rings, K-groups of C �-algebras, L�1-groups.



862 V. Metaftsis and S. Prassidis

The fundamental work of Farrell–Jones ([9]) deals with the Fibered Isomor-
phism Conjecture for the pseudoisotopy spectrum. It should be noted that if a
group satisfies the Fibered Isomorphism Conjecture for pseudoisotopies, then it
satisfies the Isomorphism Conjecture for the lower K-groups. The reason for this
is that the lower homotopy groups of the pseudoisotopy spectrum and theK-theory
spectrum are isomorphic. ForK-groups there is a refinement of the Conjecture that
was given in [6]. They showed that finite and virtually infinite cyclic subgroups of
the first type suffice in detecting the K-theory of the group.

Our main interest is in computing the lower K-groups (that is n < 2) of the
holomorph of F2, the free group on two generators. For a groupG, the holomorph
of G is the universal split extension of G. Thus, it fits into a split exact sequence:

1! G ! Hol.G/! Aut.G/! 1:

In order to avoid confusion, we should point out here that some authors (see for
example [4]) refer to the notion of group extension in the opposite way. In their
terminology, Hol.G/ is the split extension of Aut.G/ by G.

The main result of the paper is the following:

Theorem (Main Theorem). The group Hol.F2/ satisfies the Fibered Isomorphism
Conjecture for pseudoisotopies. Furthermore, if � < Hol.F2/, then

Wh.�/ D eK0.Z�/ D Ki .Z�/ D 0; for i � �1:

Notice that Hol.F2/ is equipped with a sequence of surjections:

Hol.F2/! Aut.F2/! GL2.Z/:

The second surjection is induced by sending an automorphism of F2 to an auto-
morphism of its abelianization Z2. Notice that the kernel of both surjections is
isomorphic to F2. To show that Hol.F2/ satisfies the Fibered Isomorphism Con-
jecture, we use the fact that every automorphism of F2 is geometric, i.e., it can
be realized by a diffeomorphism on a surface with boundary. That allows us to
show first that Aut.F2/ satisfies the Conjecture and using the same fact again that
Hol.F2/ does also.

The group GL2.Z/ splits as an amalgamated free product of finite dihedral
groups:

GL2.Z/ D D4 �D2
D6:

Thus both Aut.F2/ and Hol.F2/ split as amalgamated free products. Using this
fact and the properties of elements of finite order in Aut.F2/ given in [17, 8],
we determine the finite and the virtually infinite cyclic subgroups of Aut.F2/ and
Hol.F2/, up to isomorphism. The list of groups is short and their lower K-theory
vanishes. The Main Theorem follows from this observation.
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2 Preliminaries

Let G be a discrete group. By a class of subgroups of G we mean a collection
of subgroups of G that is closed under taking subgroups and conjugates. In our
application, we consider the following classes of subgroups:
� Fin, the class of finite subgroups of G.
� FBC for the class of finite by cyclic subgroups. Those are subgroups H < G

such that
1! A! H ! C ! 1

where C is cyclic (finite or infinite) group and A is finite. Notice that FBC

contains Fin and subgroups H D AÌZ when C is the infinite cyclic group.
� VC for the class of virtually cyclic subgroups of G. For such a subgroup H

either H 2 Fin, H 2 FBC , or H D A �B C where A, B , C are finite and
ŒA W B� D ŒC W B� D 2.

� ALL for the class of all subgroups of G.

Let C be a class of subgroups of G. The classifying space for C , ECG, is a
G-CW-complex such that the isotropy groups of the actions are in C and, for each
H 2 C , the fixed point set of H is contractible (for more details [7, 14]).

Remark 2.1 ([11, 12]). For Aut.F2/ the classifying space for finite groups is the
auter space.

The Fibered Isomorphism Conjecture (FIC) was stated by Farrell–Jones ([9]).
For the groups that holds, it provides an inductive method for computing obstruc-
tion groups in geometric topology (for a review see [15]). If G satisfies the FIC,
then the natural map

HG
n .EVCGIKZ�1/! HG

n .EALLGIKZ�1/ D Kn.ZG/

is an isomorphism for n � 1. Notice that the left hand side of the isomorphism
can be computed from the virtually cyclic subgroups of G.

In general, there are “forgetful maps”

HG
n .EFinGIKZ�1/! HG

n .EFBCGIKZ�1/! HG
n .EVCGIKZ�1/:

The difference between the class Fin and the class VC is that the second class
can be captured by the Waldhausen and Bass–Farrell Nil-groups of the infinite
virtually cyclic subgroups. In [5] and [6] it was shown that the second map is an
isomorphism. Essentially, the authors proved that the Waldhausen Nil-groups that
appear in theK-theory of virtually infinite cyclic subgroups can be detected by the
Bass–Farrell Nil-groups that appear in the FBC class.
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The FIC is known to hold for certain classes of groups. One class of interest for
this paper is the class of strongly poly-free groups. A group � is called strongly
poly-free if there is a filtration

� D �0 � �1 � � � � � �n D ¹1º

such that:

(1) �i is normal in � for each i .

(2) �i=�iC1 is finitely generated free for all 0 � i � n � 1.

(3) For each 
 2 �i there is a compact surface S and a diffeomorphismf W S ! S

such that the induced homomorphism f� on �1.S/ equals c
 in Out.�1.S//
where c
 is the action of 
 on �i=�iC1 by conjugation and �1.S/ is identified
with �i=�iC1 via a suitable isomorphism.

In [2] and [10] it was shown that a finite extension of a strongly poly-free group
satisfies the FIC.

Remark 2.2. Let � be a group that satisfies (1) and (2) above. We assume that
�i=�iC1 Š F2. Then G is strongly poly-free. For this, let T 2 be the torus and
p D .1; 1/ 2 T 2. Then �1.T 2 n ¹pº; x/ D F2. In this case,

Out.F2/ D Aut.F2/=Inn.F2/ D GL2.Z/

where Aut.F2/ denotes the automorphism group of F2 (see for example [8]). Let
c
 be an induced homomorphism as in (3) above. Then the image of c
 to Out.F2/
can be represented by a diffeomorphism f of T 2 that fixes p. After an isotopy
starting at the identity on T 2, we can assume that f fixes a small open disk D
around p. Then f induces a diffeomorphism on the compact surface

f W T 2 nD ! T 2 nD

such that, up to isotopy, f is either of finite order, or (a root of) a Dehn twist or
pseudo-Anosov. Thus f� D c
 in Out.F2/.

Start with an exact sequence of groups:

1! A! B
r
�! C ! 1:

In the Appendix of [9] it was shown the FIC holds for B if:

� it holds for C .

� for each virtually cyclic subgroup V of C , it holds for r�1.V /.
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Using this result, we show the following

Proposition 2.3. Let
1! F2 ! G

r
�! H ! 1

be an exact sequence. If the FIC holds for H , then it holds for G.

Proof. Using the result in [9], it is enough to show that the FIC holds for r�1.V /
where V is a virtually cyclic subgroup of H .

If V is finite, then r�1.V / is a finite extension of F2 and r�1.V / is a finite
extension of a free group. The result follows from Remark 2.2.

If V is infinite, then V contains an infinite cyclic normal subgroup W of fi-
nite index. Then r�1.W / is a normal subgroup of r�1.V / and fits into an exact
sequence:

1! F2 ! r�1.W /! W ! 1:

Then there is a filtration r�1.W / > F2 > ¹1º, with the first quotient being an
infinite cyclic group. Obviously, every homomorphism of Z is realized by a dif-
feomorphism of S1�Œ0; 1�. Using Remark 2.2, we see that r�1.W / is strongly
poly-free. Therefore, r�1.V / is a finite extension of a strongly poly-free group.
By [10], it satisfies the FIC, completing the proof of the proposition.

Let Hol.F2/ denote the holomorph of F2, namely, the universal split extension
of F2:

1! F2 ! Hol.F2/
p
�! Aut.F2/! 1:

Notice that there is an exact sequence

1! Inn.F2/! Aut.F2/
q
�! GL2.Z/! 1

that is induced by mapping the automorphisms of F2 to the automorphisms of its
abelianization. That induces an exact sequence:

1! F2 ! Aut.F2/
q
�! GL2.Z/! 1:

Proposition 2.4. The FIC holds for Aut.F2/ and Hol.F2/.

Proof. The group GL2.Z/ contains a subgroup of finite index that is isomorphic
to F2. In fact, the following short exact sequence is known to hold, as a result of
the standard action that GL2.Z/ admits on the upper half plane:

1! F2 ! GL2.Z/! D12 ! 1

(see for example [8]). Thus the FIC holds for GL2.Z/. Now Aut.F2/ fits into an
exact sequence:

1! F2 ! Aut.F2/! GL2.Z/! 1:
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By Proposition 2.3, the FIC holds for Aut.F2/. Also, Hol.F2/ fits into an exact
sequence:

1! F2 ! Hol.F2/! Aut.F2/! 1:

Again by Proposition 2.3, the FIC holds for Hol.F2/.

3 Infinite finite-by-cyclic subgroups of Hol.F2/

Since there is an exact sequence

1! Inn.F2/! Aut.F2/
p
�! GL2.Z/! 1

and F2 D ha; bi is torsion free, every finite subgroup of Aut.F2/ maps isomor-
phically to a finite subgroup of GL2.Z/. On the other hand, GL2.Z/ admits a
decomposition as an amalgamated free product of the form

GL2.Z/ D D4 �D2
D6 (3.1)

where D2, D4 and D6 are dihedral groups of orders 4, 8 and 12 respectively.
Hence, any finite subgroup of GL2.Z/ is a subgroup of a conjugate of either D2
or D4 or D6 and hence, so is every finite subgroup of Aut.F2/.

Now a presentation for Aut.F2/ is given by

hp; x; y; �a; �b j x
4
D p2 D .px/2 D 1; .py/2 D �b; x

2
D y3��1b �a;

p�1�ap D x
�1�ax D y

�1�ay D �b; p
�1�bp D �a;

x�1�bx D �
�1
a ; y�1�by D �

�1
a �bi

where �a, �b are the inner automorphism of F2 corresponding to a, b respectively
(see for example [16]). Moreover, a presentation for GL2.Z/ is given by

GL2.Z/ D hP;X; Y j X4 D P 2 D .PX/2 D .PY /2 D 1; X2 D Y 3i

and Aut.F2/ maps onto GL2.Z/ by p 7! P , x 7! X , y 7! Y , �a; �b 7! 1.
As shown in [17], if g is an element of finite order in Aut.F2/, then g is con-

jugate in Aut.F2/ to one of the following elements: p, px, px�a, x2, y2��1
b

or
x with orders 2, 2, 2, 2, 3 or 4 respectively. This fact implies that Aut.F2/ cannot
contain finite subgroups isomorphic to D6. Moreover, any element of Aut.F2/
can be written uniquely in the form pru.x; y/x2sw.�a; �b/ where r; s 2 ¹0; 1º,
w.�a; �b/ is a reduced word in Inn.F2/ and u.x; y/ is a reduced word where
x; y; y�1 are the only powers of x; y appearing (see [17, 16]).
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Also, due to the decomposition (3.1) of GL2.Z/, Aut.F2/ is also an amalga-
mated free product of the form

Aut.F2/ D B �D C (3.2)

where B , C and D fit into the following short exact sequences:

1! Inn.F2/! B ! D4 ! 1;

1! Inn.F2/! C ! D6 ! 1;

1! Inn.F2/! D ! D2 ! 1:

Moreover, since every one of B , C and D are free-by-finite groups, they admit
an action on a tree with finite quotient graph and finite vertex and edge stabilizers
(as a corollary of the Almost Stability Theorem of Dicks and Dunwoody [8]). In
fact, they are also amalgamated free products of the form

B D D4 �Z=2Z D2 D hx; pi �hpxi hpx; x
2�bi;

C D D3 �Z=2Z D2 D hy
2��1b �a; pi �hpi hp; x

2
i;

D D D2 � .Z=2Z/ D hp; x
2
i � hx2�bi:

(3.3)

Once again, the elements of finite order are p,px, x2�b ,px3�b , x2,px2, y2��1
b
�a

and x. To be in accordance with Meskin, we see that

x2.y2t�1b �a/x
2
D y3��1b �a.y

2��1b �a/�
�1
a �by

�3
D y2��1b ;

��1a x�1.px3�b/x�a D px�a, y.x2�b/y�1 D x2 and x�1.px2/x D p.
By definition,G D Hol.F2/ is the universal split extension of Aut.F2/ and thus

it fits to the split exact sequence

1! F2 ! Hol.F2/! Aut.F2/! 1:

So Hol.F2/ D F2Ì Aut.F2/. Hence, the above presentation for Aut.F2/ provides
us with a presentation for Hol.F2/. Namely,

Hol.F2/ D hp; x; y; �a; �b; a; b j x
4
D p2 D .px/2 D 1; .py/2 D �b;

x2 D y3��1b �a;

p�1�ap D x
�1�ax D y

�1�ay D �b;

p�1�bp D �a; x
�1�bx D �

�1
a ;

y�1�by D �
�1
a �b; �

�1
a a�a D a;

��1a b�a D a
�1ba; ��1b a�b D b

�1ab;

��1b b�b D b; p
�1ap D b; p�1bp D a;

x�1ax D b; x�1bx D a�1; y�1ay D b;

y�1by D a�1bi:
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Moreover, the decomposition (3.2) of Aut.F2/ provides an amalgamated free
product decomposition for Hol.F2/:

Hol.F2/ D .F2 Ì B/ �F2ÌD .F2 Ì C/; (3.4)

and based on (3.3) we have

F2 Ì B D .F2 ÌD4/ �F2ÌZ=2Z .F2 ÌD2/;

F2 Ì C D .F2 ÌD3/ �F2ÌZ=2Z .F2 ÌD2/;

F2 ÌD D .F2 ÌD2/ � .F2 Ì Z=2Z/:

(3.5)

Based again on the Almost Stability Theorem, we see that every vertex group
in the above graphs of groups is a free-by-finite group, so it also admits a decom-
position as a graph of groups with finite vertex groups. An analysis, based on the
presentations and also on the fact that the action of x, y, p on a, b is the same as
that on �a, �b , would give us the following: In F2 Ì B ,

F2 ÌD4 D D4 �Z=2Z D2 D hx; pi �hpxi hpx; x
2bi;

F2 ÌD2 D D2 �Z=2Z D2 �Z=2Z D2

D hpx; x2�bi �hpxi hpx; x
2�bb

�1
i �hx2�bb�1i hpxa; x

2�bb
�1
i;

F2 Ì Z=2Z D .Z=2Z�b/ � Z=2Z D .hpxi�b/ � hpxai:

In F2 Ì C ,

F2 ÌD3 D D3 �Z=2Z D3 D hy
2��1b ; pi �hpi hy

2��1b a; pi;

F2 ÌD2 D D2 � Z=2Z D hp; x2i � hx2bi;

F2 Ì Z=2Z D .Z=2Z � Z=2Z/�a D .hpi � hpba
�1
i/�a:

Finally, in F2 ÌD2,

F2 ÌD2 D D2 � Z=2Z D hp; x2i � hx2bi;

F2 Ì Z=2Z D Z=2Z � Z=2Z � Z=2Z D hx2�bi � hx
2�bbi � hx

2�bb
�1ai:

In the above, S�t denotes the HNN-extension with base group S and stable letter t .
For example, F2 Ì hpx; x2�bi has a presentation of the form

h�1; �2; a; b j �
2
1 D �

2
2 D 1; Œ�1; �2� D 1; �1a�1 D a

�1;

�1b�1 D b; �2a�2 D b
�1a�1b; �2b�2 D b

�1
i

where �1 D px and �2 D x2�b . By setting �2 D b�2 and eliminating b, we get

h�1; �2; a; �2 j �
2
1 D �

2
2 D �

2
2 D 1; Œ�1; �2� D 1;

�1a�1 D a
�1; �2a�2 D a

�1; Œ�1; �2� D 1i:
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Now by setting �3 D �1a and eliminating a, we get

h�1; �2; �3; �2 j �
2
1 D �

2
2 D �

2
2 D �

2
3 D 1; Œ�1; �2� D Œ�2; �3� D Œ�1; �2� D 1i

which is the desired decomposition.
So now we can prove the following result which generalizes the result in [17]

on the elements of finite order in Aut.F2/.

Lemma 3.1. An element of finite order in Hol.F2/ is conjugate to exactly one of
p, px, pxa, px�a, px�aa, x2, x2b, y2��1

b
, y2��1

b
a and x with orders 2, 2, 2, 2,

2, 2, 2, 3, 3 and 4 respectively.

Proof. Given the above decomposition, every element of finite order is a conjugate
of an element of a vertex group. So it suffices to observe x2.px3�bb/x2 D px�aa,
x2.px3�b/x

2 D px�a, x2.px3b/x2 D pxa, x.px2/x�1 D p, y.x2�b/y�1 D
x2, b�1.x2�bb�1/b D x2�bb, x��1a �by

�1.x2�bb
�1a/y��1

b
�ax
�1 D x2�bb and

yb�1x��1a �by
�1.x2�bb/y�

�1
b
�ax
�1by�1 D x2b. Notice also that x2b is no

longer conjugate to x2 since the relation x2 D y3��1
b
�a has no equivalent for a

and b due to the semidirect product structure of G.

From the fact that Hol.F2/ D ha; bi Ì Aut.F2/ we have that every element W
of Hol.F2/ can be written uniquely in the form

W D Vz.a; b/

where V 2 Aut.F2/ and z.a; b/ is a word in the free group ha; bi. So the normal
form for the elements of Aut.F2/ implies the existence of a normal form for the
elements of Hol.F2/:

W D pru.x; y/x2sw.�a; �b/z.a; b/

where w.ta; tb/ is a reduced word in the free group hta; tbi, u.x; y/ is a reduced
word where x, y, y�1 are the only powers of x, y appearing and r; s 2 ¹0; 1º.
Moreover, every vertex group in the decomposition (3.4) has also a normal form.
More specifically, every element in F2 Ì B can be written uniquely in the form
prxnx2sw.�a; �b/z.a; b/ where r; n; s 2 ¹0; 1º and every element in F2 Ì C can
be written uniquely in the form prynx2sw.�a; �b/z.a; b/ where r; s 2 ¹0; 1º and
n 2 ¹0; 1;�1º and w.�a; �b/ is a reduced word in h�a; �bi and z.a; b/ is a reduced
word in ha; bi.

Notice that one can define a natural epimorphism

Hol.F2/! GL2.Z/

with kernel ha; bi Ì h�a; �bi. In fact, Hol.F2/ fits into the following short exact
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sequence:
1! F2 Ì F2 ! Hol.F2/! GL2.Z/! 1

although such a sequence does not split.
We are searching for subgroups ofG D Hol.F2/which are isomorphic toAÌZ

whereA is a finite subgroup ofG. In our argument, we shall make extensive use of
the following well-known result from Bass–Serre theory [18]. Let M be a group
that acts on its standard tree T and m 2 M such that m stabilizes two distinct
vertices of T . Then m stabilizes the (unique reduced) path that connects the two
vertices. In particular, m is an element of every edge stabilizer of every edge that
constitutes the path that connects the two vertices.

In fact, we shall show the following:

Proposition 3.2. The only infinite finite-by-cyclic subgroups of G are isomorphic
to Z=2Z�Z.

Proof. Claim 1. The only subgroups isomorphic to AÌZ with A finite cyclic are
isomorphic to Z=2Z�Z.

One can easily check that hpx; bi Š Z=2Z�Z and so Z=2Z�Z is a subgroup
group of G.

Now the only elements of order three in Hol.F2/ are conjugates of y2��1
b

or
y2��1

b
a. Assume that there is a subgroup of G isomorphic to Z=3Z Ì Z. Then,

conjugating if necessary, we may assume that there is an element of infinite order
in G, say g, such that g�1.y2��1

b
as/g D .y2��1

b
as/˙1 with s 2 ¹0; 1º. Based

on the decomposition (3.4), we see that the above relation implies that y2��1
b
as

stabilizes both vertices F2 ÌC and g�1.F2 ÌC/ and hence the path that connects
them. So it belongs to the edge stabilizer F2 Ì D unless g 2 F2 Ì C . But
if g 2 F2 Ì D, we have a contradiction since by decomposition (3.5), F2 Ì D

cannot contain elements of order 3. Now if g 2 F2 Ì C , then based again on
the decomposition (3.5) of F2 Ì C we have that g stabilizes both F2 Ì D3 and
g�1.F2 Ì D3/ and so it belongs to F2 Ì Z=2Z, a further contradiction unless
again g 2 F2 ÌD3. Finally, by the decomposition of F2 ÌD3 D D3 �Z=2Z D3
we have again that g has to be an element of either of the two D3 vertices and
hence an element of finite order.

We shall now show that G cannot contain subgroups isomorphic to Z=4Z Ì Z.
Assume that G contains such a subgroup, say A. Then A is generated by a conju-
gate of x (since the conjugacy class of x is the only class of elements of order 4)
and by an element g of G. Using conjugation if necessary, we may assume the
element of order 4 in A is x. Now let g 2 G such that hx; gi Š Z=4Z Ì Z: Then
g�1xg D x˙1. Let G act to the tree that corresponds to the decomposition (3.4).
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Then, due to the above relation, x stabilizes both F2 ÌB and g�1.F2 ÌB/ and so
it stabilizes the path between the two vertices. Hence, x 2 F2ÌD, a contradiction
unless g 2 F2 Ì B . Moreover, using the decomposition (3.5) we see that g can
only be an element of F2 ÌD4 and using the fact that F2 ÌD4 D D4 �Z=2Z D2
it can only be an element of D4 and so is of finite order. This completes the proof
of claim 1.

Claim 2. There are no subgroups of G of the formD2 Ì Z or of the formD3 Ì Z.
Up to conjugacy, the possible D2 in G are the following: hx2; pi, hpx; x2i,

hpx; x2bi, hpx; x2�bi, hpx; x2�bb�1i and hpxa; x2�bb�1i. Now notice that all
last five, hpx; x2i, hpx; x2bi, hpx; x2�bi, hpx; x2�bb�1i and hpxa; x2�bb�1i,
appear only once in the graph of groups decomposition (3.5) of Hol.F2/, as vertex
groups. Moreover, in all five, none of the generators is conjugate to the other, i.e.,
there are no g 2 G such that gpxg�1 D x2 or gpxg�1 D x2b or gpxg�1 D
x2�bb

�1 or gpxg�1 D x2b or gpxag�1 D x2�bb
�1 by Lemma 3.1. Hence,

a relation of the form gD2g
�1 D D2 implies (repeating again the argument of

claim 1) that g is an element of finite order. So the only possibility for a semidirect
product D2 Ì Z lies with hx2; pi.

So assume that there is an element g 2 G such that hg; p; x2i D D2ÌZ. Then,
since p and x2 are not conjugates and px2 is conjugate to p, the action of g is
either gpg�1 D p and gx2g�1 D x2, or gpg�1 D px2 and gx2g�1 D x2. Let
us concentrate to the relation gpg�1 D p. Given the normal form of the element
g D pru.x; y/x2sw.�a; �b/z.a; b/ we have that

pru.x; y/x2sw.�a; �b/z.a; b/pz
�1.a; b/w�1.�a; �b/x

�2su�1.x; y/p�r D p:

The above relation implies the existence of the following relation in GL2.Z/:

P rU.X; Y /X2sPX2sU�1.X; Y /P r D P

which is equivalent to
UPU�1 D P:

By the normal form for the elements of GL2.Z/, we have that U is of the form
U D XY e1 : : : XY ek with ei 2 ¹˙1º. So the word UPU�1 becomes

XY e1 : : : XY ekPY �ekX�1 : : : Y �e1X�1

D XY e1 : : : XY ekY ekX : : : Y e1X � P

D

8̂̂̂<̂
ˆ̂:
X2 �XY e1 : : : XY ek�1X � Y �1 �XY ek�1 : : : Y e1X � P if ek D 1;
X2 �XY e1 : : : XY ek�1X � Y �XY ek�1 : : : Y e1X � P if ek D �1;
XY e1 : : : XY ˙1X : : : Y e1XP if ek D 0 and

ek�1 D �1:
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In all cases, the relation UPU�1 D P is impossible since, after deletions of P ,
the remaining word is reduced as written, so is never trivial unless U D 1. Hence,
u D 1 and so the only possible g is given by g D prx2sw.�a; �b/z.a; b/. Then
the relation gpg�1 D p gives

x2sw.�a; �b/z.a; b/pz
�1.a; b/w�1.�a; �b/x

2s
D p

i.e., w.�b; �a/w�1.�a; �b/ D 1. One can easily see that if w.�a; �b/ is a re-
duced word in Inn.F2/ Š F2, then the word w.�b; �a/ is reduced and the word
w.�b; �a/w

�1.�a; �b/ is reduced and cyclically reduced as written. Hence, a re-
lation w.�b; �a/w�1.�a; �b/ D 1 is impossible unless w D 1. That implies
z.b; a/z�1.a; b/ D 1 and again z D 1. Then g D prx2s which has finite or-
der for all possible r , s.

Let us now examine the possibility gpg�1 D px2. This implies that

pru.x;y/x2sw.�a; �b/z.a; b/pz
�1.a; b/w�1.�a; �b/x

�2su�1.x; y/p�r D px2:

Projection to GL2.Z/ gives

P rU.X; Y /X2sPX2sU�1.X; Y /P r D PX2;

which is equivalent to
UPU�1 D PX2:

Performing the same analysis as above forUPU�1, we get that the only possibility
is U D X , hence u D x. Then g D prxx2sw.�a; �b/z.a; b/ and so the relation
prxx2sw.�a; �b/z.a; b/pz

�1.a; b/w�1.�a; �b/x
2sx�1pr D px2 implies again

that w.�b; �a/w�1.�a; �b/ D 1 which is possible if and only if w D 1. This
implies that z.b; a/z�1.a; b/ D 1 which is possible if and only if z D 1.

Finally, one can easily check that existence of g 2 G such that gD3g�1 D D3
can only occur for g of finite order (using again the previous arboreal argument),
so we have that no subgroup of the form D3 Ì Z can occur as a subgroup of G.

The only case left is to consider subgroups isomorphic to D4 Ì Z. It is easy
to see that then it will contain subgroups isomorphic to D2 Ì Z, which is impos-
sible.

4 Vanishing of the lower K -theory of Hol.F2/

We will prove the main result of the paper. For a group G, we write

Whq.G/ D

8̂<̂
:

Wh.G/ if q D 1;
QK0.ZG/ if q D 0;
Kq.ZG/ if q < 0:
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Theorem 4.1. Let � < Hol.F2/. Then for all q � 1, Whq.�/ D 0.

Proof. We will show the theorem for G D Hol.F2/. This also implies the result
for Aut.F2/ since Aut.F2/ is a subgroup of Hol.F2/. By Proposition 2.4, G sat-
isfies the FIC. Let � < Hol.F2/. Then by [9], � also satisfies the FIC. Thus the
maps

HG
q .EFBC�IKZ�1/!Whq.Z�/; q � 1;

are isomorphisms. There is a spectral sequence that computes the left hand side of
such an isomorphism:

E2i;j D H
G
i .EFBC�IWhj .V // H)WhiCj .�/

where V is in FBC . Now, by the decomposition of Hol.F2/ and Proposition 3.2:

(1) If V is finite, V will be isomorphic to one of the following groups: Z=2Z,
Z=3Z, Z=4Z, D2, D3, D4. But in this case from the lists in [1] and [13]

Whq.V / D 0; for q � 1:

(2) If V is infinite, then V D Z=2Z�Z. Using the Bass–Heller–Swan Formula
and the calculations of the Nil-groups in [3], we have that

Whq.V / D 0; for q � 1:

Thus Whq.�/ D 0 for all q � 1.

Acknowledgments. The authors would like to thank Tom Farrell for asking the
question on the lower K-theory of Aut.F2/.
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