CHRISTOS V. NIKOLOPOULOS

Professor

At the Mathematics Department of the University of the Aegean.

CONTACT INFORMATION

 

Department of Mathematics
University of the Aegean
Karlovassi,  832 00 Samos
Greece
Phone :
+30 22730 82156,  Fax : +30 22730 82007,
E-mail :
cnikolo@aegean.gr

EDUCATION

 

B.Sc. University of Athens, GREECE (Diploma in Mathematics).

M.Sc. Heriot - Watt University (Master in the Mathematics of Nonlinear Models)

Ph.D. Heriot - Watt University (Ph.D in Mathematics).

 

RESEARCH INTERESTS

Mathematical modelling, Free boundary problems, PDE's, Blow - up, Non local problems

 

PUBLISHED PAPERS


 

1.  A.A. Lacey, C. Nikolopoulos, M. Reading, A Mathematical model for the MTDSC, Journal of Thermal Analysis, 1997,  Vol 50, 279-333.

2K.J. Jones, I. Kinshott, M. Reading, A.A. Lacey, C. Nikolopoulos, H. M. Pollock,  “The origin and interpretation of the signals of MTDSC, Thermochemica Acta, 1997, Vol  304/305, 187-199.

3. A.A. Lacey, C. Nikolopoulos,  “A model for polymer melting during MTDSC”, IMA Journal of Applied Mathematics, 2001, Vol 66, 449-476.

4. C. Nikolopoulos,  “A model for melting of a pure material during MTDSC”, SIAM Journal of Applied Mathematics, 2002, Vol 62 (4), 1176-1196

5.  Í.É. Kavalaris, C.V. Nikolopoulos, D.E. Tzanetis ,Estimates of blow-up time for a non-local problem modelling an Ohmic heating process, European Journal of Applied Mathematics, 2002, Vol. 13, pp. 337-351,

6.  C.V. Nikolopoulos ,A model for melting of an inhomogeneous material during MTDSC, Applied Mathematical Modelling, 2004, Vol 28 , 427-424.

7C.V. Nikolopoulos, D.E. Tzanetis ,A model for housing allocation of homeless people due to a natural disaster”, Nonlinear Analysis B – Real World Applications, 2003, Vol. 4, pp. 561-579.

8A.A. Lacey, C. Nikolopoulos,  “A 1-dimensional mathematical model for polymer melting during MTDSC”, IMA Journal of Applied Mathematics, 2006 71(2), 186-209.

9. C.V. Nikolopoulos, D.E. Tzanetis ,Estimates of blow-up time of a non-local reactive-convective problem modelling Ohmic heating of foods”, Proceedings of Edinburgh Mathematical Society, 2006, Vol 49(1), pp 215-239.

10.  Í.É. Kavalaris,  A.A. Lacey,  C.V. Nikolopoulos, D.E. Tzanetis , “Asymptotic analysis and estimates of blow–up time for the radial symmetric semilinear heat equation in the open-spectrum case, Mathematical Methods in the  Applied Sciences, 2007; 30:1507–1526.

11. Í.É. Kavalaris,  A.A. Lacey,  C.V. Nikolopoulos, C. Voong, “Behaviour of a non-local equation modelling linear friction welding”, IMA Journal of Applied Mathematics, (2007) 72, 597616.

12. G. Zouraris, C.V. Nikolopoulos ,Numerical solution of a non – local elliptic problem  modelling a thermistor with a finite element and a finite volume method, Discrete and Continuous Dynamical Systems, Supplement Volume 2007, pp. 768–778.  

13. C.V. Nikolopoulos,Numerical solution of a non-local problem modelling ohmic heating of foods, Computational Methods in Applied Mathematics, Vol.9(2009), No.4, pp.391-411. 

14. C.V. Nikolopoulos, A.N. Yannacopoulos,  A model for optimal stopping in advertisment”, Nonlinear Analysis: Real World Applications, Volume 11, Issue 3, June 2010, Pages 1229-1242.

15. C.V. Nikolopoulos, “A mushy region in concrete corrosion”, Applied Mathematical Modelling,  34 (2010), pp. 4012–4030.

16. Í.É. Kavalaris, A.A. Lacey, C.V. Nikolopoulos, D.E. Tzanetis, “A hyperbolic problem arising in MEMS tecnology”,  Rocky Mountain J. Math., Volume 41, Number 2 (2011), 505-534.

17. D.V. Politikos,  D.E. Tzanetis, C.V. Nikolopoulos, C.D. Maravelias,  The application of an age-structured model to the north Aegean anchovy fishery: An evaluation of different management measures”,  Mathematical Biosciences,  Volume 237, Issues 1–2, May–June 2012, Pages 17–27.

18.  Í.É. Kavalaris, A.A. Lacey, C.V. Nikolopoulos, D.E. Tzanetis, “On the Quenching Behaviour of a Semilinear Wave Equation Modelling MEMS Technology”, Discrete and Continuous Dynamical Systems,Volume 35, Number 3, March 2015, pp.1009–1037.

19.  C.V. Nikolopoulos, “Macroscopicmodels for a mushy region in concrete corrosion”, Journal of Engineering Mathematics, 2014, DOI 10.1007/s10665-014-9743-0.  

20. C.V. Nikolopoulos,Mathematical Modelling of a Mushy Region Formation During  Sulphation of Calcium Carbonate”, Networks and Heterogeneous Media, Volume 9, Number 4, December 2014, doi:10.3934/nhm.2014.9.xx.

21. Í.É. Kavalaris, A.A. Lacey, C.V. Nikolopoulos, D.E. Tzanetis,On the Quenching of a non local parabolic problem arising in electrostatic MEMS control”, Nonlinear Analysis – Theory Methods and Applications, Volume 138, 2016, pp189-206.

22. C.V. Nikolopoulos, Macroscopic models for calcium carbonate corrosion due to sulfation. Variation of diffusion and volume expansion”, European Journal of Applied Mathematics, June 2018, 1-28. doi:10.1017/S095679251800027X.

23. A. Muntean, C. V. Nikolopoulos,Colloidal Transport in Locally Periodic Evolving Porous Media -- An Upscaling Exercise, SIAM Journal on Applied Mathematics 80 (1), 448-475.

24. R. Drosinou, N. I. Kavallaris, C. V. Nikolopoulos, “A study of a nonlocal problem with Robin boundary conditions arising from MEMS technology”, Math Meth Appl Sci,. Volume 44, Issue 13, 15 September 2021; 10084–10120, http://dx.doi.org/10.1002/mma.7393.

25. M. Eden, C. V. Nikolopoulos, A. Muntean, “A multiscale quasilinear system for colloids deposition in porous media:Weak solvability and numerical simulation of a near-clogging scenario”, Nonlinear Analysis: Real World Applications 63 (2022) 103408, https://doi.org/10.1016/j.nonrwa.2021.103408.

26. R. Drosinou, N. I. Kavallaris, C. V. Nikolopoulos, “Impacts of noise on quenching of some models arising in MEMS technology”, European Journal of Applied Mathematics, (2022) 1-33. https://doi.org/10.1017/S0956792522000262

27. Nikolopoulos, C., Eden, M. & Muntean, “A. Multiscale simulation of colloids ingressing porous layers with evolving internal structure”, Int. J. Geomath 14, 1 (2023), https://doi.org/10.1007/s13137-022-00211-8.

28. R. Drosinou, N. I. Kavallaris, A. Matzavinos, C. V. Nikolopoulos,  A stochastic parabolic model of MEMS driven by fractional Brownian motion”, Journal of Mathematical Biology volume 86, Article number: 73 (2023),

https://link.springer.com/article/10.1007/s00285-023-01897-6